Waste and Biomass Valorization

, Volume 10, Issue 3, pp 599–607 | Cite as

Glucose and Valuable Chemicals Production from Cotton Waste Using Hydrothermal Method

  • Chizuru SasakiEmail author
  • Ami Kiyokawa
  • Chikako Asada
  • Yoshitoshi Nakamura
Original Paper


Direct hydrolysis of a towel to glucose was investigated using steam explosion and microwave-assisted treatment to find effective uses for cotton waste. The maximum glucose yield by direct hydrolysis (based on an untreated towel) was 18.8%, obtained at a steam pressure of 5.5 MPa (at 271 °C) and steaming time of 5 min using steam explosion. For the microwave-assisted treatment, with a 1.0 (w/w)% sulfuric acid catalyst, the maximum glucose yield by direct hydrolysis was 28.9%, obtained at a microwave heating temperature of 200 °C for 7 min. The maximum total glucose yield (from both direct hydrolysis and enzymatic hydrolysis of treated residue) was 78.0%, attained at a microwave heating temperature of 200 °C for 7 min with 0.5 (w/w)% sulfuric acid catalyst. Furthermore, the maximum total glucose and valuable water soluble chemicals (cellobiose, 5-hydroxymethylfurfural, formic acid, and levulinic acid), 94.1%, were achieved at heating temperature of 200 °C for 10 min with 0.5 (w/w)% sulfuric acid catalyst. Finally, ethanol, 84.5% of conversion rate, could be produced using supernatant (it contained glucose) and microwave treated residue (200 °C for 7 min with 0.25 (w/w)% sulfuric acid catalyst) as carbon source for Saccharomyces cerevisiae with less fermentation inhibition.


Glucose Hydrolysis Microwave Ethanol fermentation 



The authors thank Dr. Shinagawa (Bioacademia Co. Ltd., Japan) for providing S. cerevisiae BA11. Part of this work was financially supported by MAYEKAWA HOUONKAI FAUNDATION and a Grant-in-Aid for Scientific Research (C) (No. 17K00669) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.


  1. 1.
    Hamawand, I., Sandell, G., Pittaway, P., Chakrabarty, S., Yusaf, T., hen, G., Seneweera, S., Al-Lwayzy, S., Bennett, J., Hopf, J.: Bioenergy from cotton industry wastes: a review and potential. Renew. Sust. Energ. Rev. 66, 435–448 (2016)CrossRefGoogle Scholar
  2. 2.
    Cao, J., Sun, X., Lu, C., Zhou, Z., Zhang, X., Yuan, G.: Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites. Carbohydr. Polym. 149, 60–67 (2016)CrossRefGoogle Scholar
  3. 3.
    McIntosh, S., Vancov, T., Palmer, J., Morris, S.: Ethanol production from cotton gin trash using optimised dilute acid pretreatment and whole slurry fermentation process. Bioresour. Technol. 173, 42–51 (2014)CrossRefGoogle Scholar
  4. 4.
    Fockink, D. H., Maceno, M. A. C., Ramos, L. P.: Production of cellulosic ethanol from cotton processing residues after pretreatment with dilute sodium hydroxide and enzymatic hydrolysis. Bioresour. Technol. 187, 91–96 (2015)CrossRefGoogle Scholar
  5. 5.
    Hong, F., Guo, X., Zhang, S., Han, S. F., Yang, G., Jonsson, L. J.: Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour. Technol. 104, 503–508 (2012)CrossRefGoogle Scholar
  6. 6.
    Ismail, Z. Z., Talib, A. R.: Recycled medical cotton industry waste as a source of biogas recovery. J. Clean. Prod. 112, 4413–4418 (2016)CrossRefGoogle Scholar
  7. 7.
    Flores, R. J., Fake, G., Carroll, J., Hood, E., Howard, J.: A novel method for evaluating the release of fermentable sugars from cellulosic biomass. Enzyme Microb. Technol. 47, 206–211 (2010)CrossRefGoogle Scholar
  8. 8.
    Zheng, Y., Pan, Z., Zhang, R., Labavitch, J. M., Wang, D., Teter, S. A., Jenkins, B. M.: Evaluation of different biomass materials as feedstock for fermentable sugar production. Appl. Biochem. Biotechnol. 136–140, 423–436 (2007)Google Scholar
  9. 9.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  10. 10.
    Hashaikeh, R., Fang, Z., Bulter, I. S., Hawari, J., Kozinski, J. A.: Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel 86, 1614–1622 (2007)CrossRefGoogle Scholar
  11. 11.
    Luo, G., Shi, W., Chen, X., Ni, W., Strong, P. J., Jia, Y., Wang, H.: Hydrothermal conversion of water lettuce biomass at 473 or 523 K. Biomass Bioenergy. 35, 4855–4861 (2011)CrossRefGoogle Scholar
  12. 12.
    Phaiboonsilpa, N., Yamauchi, K., Lu, X., Saka, S.: Two-step hydrolysis of Japanese cedar as treated by semi-flow compressed water. J. Wood Sci. 56, 331–338 (2010)CrossRefGoogle Scholar
  13. 13.
    Sakaki, T., Shibata, M., Miki, T., Hirose, H., Hayashi, N.: Decomposition of cellulose in near-critical water and fermentability of the products. Energy Fuels. 10, 684–688 (1996)CrossRefGoogle Scholar
  14. 14.
    Zhao, Y., Lu, W. J., Wang, H. T., Yang, J. L.: Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology. Bioresour. Technol. 100, 5884–5889 (2009)CrossRefGoogle Scholar
  15. 15.
    Sasaki, C., Sumimoto, K., Asada, C., Nakamura, Y.: Direct hydrolysis of cellulose to glucose using ultra-high temperature and pressure steam explosion. Carbohydr. Polym. 89, 298–301 (2012)CrossRefGoogle Scholar
  16. 16.
    Diaz, A. B., Moretti, M. M. S., Bezerra-Bussoli, C., Nunes, C. C. C., Blandino, A., Silva, R., Gomes, E.: Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour. Technol. 185, 316–323 (2015)CrossRefGoogle Scholar
  17. 17.
    Jin, S., Zhang, G., Zhang, P., Li, F., Wang, S., Fan, S., Zhou, S.: Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. Bioresour. Technol. 221, 26–30 (2016)CrossRefGoogle Scholar
  18. 18.
    Sasaki, C., Takada, R., Watanabe, T., Honda, Y., Karita, S., Nakamura, Y., Watanabe, T.: Surface carbohydrate analysis and bioethanol production of sugarcane bagasse pretreated with the white rot fungus, Ceriporiopsis subvermispora and microwave hydrothermolysis. Bioresour. Technol. 102, 9942–9946 (2011)CrossRefGoogle Scholar
  19. 19.
    Chimentão, R.J., Lorente, E., Gispert-Guirado, F., Medina, F., Lopez, F.: Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydr. Polym. 111, 116–124 (2014)CrossRefGoogle Scholar
  20. 20.
    Ching, T. W., Haritos, V., Tanksale, A.: Microwave assisted conversion of microcrystalline cellulose into value added chemicals using dilute acid catalyst. Carbohydr. Polym. 157, 1794–1800 (2017)CrossRefGoogle Scholar
  21. 21.
    Hermiati, E., Tsubaki, S., Azuma, J.: Cassava pulp hydrolysis under microwave irradiation with oxalic acid catalyst for ethanol production. J. Math. Fund. Sci. 46, 125–139 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhu, Z., Rezende, C. A., Simister, R., McQueen-Mason, S. J., Macquarrie, D. J., Polikarpov, I., Gomez, L. D.: Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy. 93, 269–278 (2016)CrossRefGoogle Scholar
  23. 23.
    Wang, D., Kim, D. H., Yoon, J. J., Kim, K. H.: Production of high-value β-1,3-glucooligosaccharides by microwave-assisted hydrothermal hydrolysis of curdlan. Process Biochem. 52, 233–237 (2017)CrossRefGoogle Scholar
  24. 24.
    Bian, J., Peng, P., Peng, F., Xiao, X., Xu, F., Sun, R.C.: Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food chem. 156, 7–13 (2014)CrossRefGoogle Scholar
  25. 25.
    Ulbricht, R. J., Sharon, J., Thomas, J.: A review of 5-hydroxymethylfurfural HMF in parental solutions. Fundam. Appl. Toxicol. 4, 843–853 (1984)CrossRefGoogle Scholar
  26. 26.
    Dunlop, A.P.: Furfural formation and behavior. Ind. Eng. Chem. 40, 204–209 (1948)CrossRefGoogle Scholar
  27. 27.
    Tong, x., Ma, Y., Li, Y.: Biomass into chemicals: conversion of sugars to fran derivatives by catalytic processes. Appl. Catal. A 385, 1–13 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhou, J., Tang, Z., Jiang, X., Jiang, R., Shao, J., Han, F., Xu, Q.: Catalytic conversion of glucose into 5-hydroxymethyl-furfural over chromium-exchanged gentonite in ionic liquid-dimethyl sulfoxide mixutures. Waste Biomass Valorif. 7, 1–12 (2016)Google Scholar
  29. 29.
    Rackemann, D.W., Doherty, W.O.S.: The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefin. 5, 198–214 (2011)CrossRefGoogle Scholar
  30. 30.
    Jeon, H.J., Chung, Y.M.: Hydrogen production from formic acid dehydrogenation over Pd/C catalysts: effect of metal and support properties on the catalytic performance. Appl. Catal. B 210, 212–222 (2017)CrossRefGoogle Scholar
  31. 31.
    Chum, H. L., Johnson, D. K., Black, S. K., Overend, R. P.: Pretreatment catalyst effects and the combined severity parameter. Appl. Biochem. Biotechnol. 24/25, 1–14 (1990)CrossRefGoogle Scholar
  32. 32.
    Palmqvist, E., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74, 25–33 (2000)CrossRefGoogle Scholar
  33. 33.
    Patil, S. K., Lund, C. R.: Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuels 25, 4745–4755 (2011)CrossRefGoogle Scholar
  34. 34.
    Almeida, J. R.M., Modig, T., Petersson, A., Hahn-Hägerdal, B., Liden, G., Gorwa-Grauslund, M.F.: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82, 340–349 (2007)CrossRefGoogle Scholar
  35. 35.
    Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., Nilvebrant, N.O.: The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24, 151–159 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Chizuru Sasaki
    • 1
    Email author
  • Ami Kiyokawa
    • 1
  • Chikako Asada
    • 1
  • Yoshitoshi Nakamura
    • 1
  1. 1.Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushimaJapan

Personalised recommendations