Waste and Biomass Valorization

, Volume 10, Issue 3, pp 733–745 | Cite as

E-LCA of Two Microwave Absorbers Obtained from Slag of Copper Primary Production

  • Elisabetta ZerazionEmail author
  • Martina Pini
  • Consuelo Mugoni
  • Cristina Siligardi
  • Paolo Veronesi
  • Anna Maria Ferrari
Original Paper



This research investigates the environmental performance of two products obtained using slag derived from copper primary production (copper slag, CS). The first is a tile produced as a traditional stoneware ceramic plate (CS tile) and the second product is a glass–ceramic sample obtained by melt quenching method (CS bulk sample). The products are intended for use in industrial plants as auxiliary heating elements aimed at absorbing microwave.


The environmental assessment was carried out using LCA methodology, and the obtained outcomes were compared to the results calculated for a traditional tile containing silicon carbide (SiC tile).


The analyses show that the innovative products have an environmental load of 74% for the CS tile and 54% for the CS bulk sample lower than the environmental impact calculated for the traditional SiC-based material tile. The latter presents a high environmental load due to the incidence on the total impact of the raw materials production. In fact, LCA analysis proves that copper slag production has an impact of 96% lower with respect to the SiC production.


This study identifies a possible waste reduction strategy in accordance with the European end-of-waste criteria, but these results should be supported by a site analysis in order to provide an appropriate context for decision making.


Copper slag Life cycle assessment (LCA) Microwave absorbers End-of-waste 



This work was supported by the European Union through the project Life+ “WASTE3—Extreme energy-free valorisation of copper metallurgical waste in heating elements and semiconductive nanoceramic enamels” (Life10ENV/IT/419/WASTE3).

Supplementary material

12649_2017_81_MOESM1_ESM.docx (49 kb)
Supplementary material 1 (DOCX 52 KB)


  1. 1.
    International Copper Study Group (ICSG): The World Copper Factbook 2014. ICSG, Lisbon (2014)Google Scholar
  2. 2.
    Integrated Pollution Prevention and Control (IPPC): Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission, Brussels (2001). Accessed 10 July 2017
  3. 3.
    Classen, M., Althaus, H.J., Blaser, S., Tuchschmid, M., Jungbluth, N., Doka, G., Faist Emmenegger, M., Scharnhorst, W.: Life Cycle Inventories of Metals. Final report Ecoinvent data v2. 1, No 10. EMPA, Swiss Centre for Life Cycle Inventories, Dübendorf, CH (2009). Accessed 10 July 2017
  4. 4.
    Krauss, U., Wagner, H., Mori, G.: Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Rohstoffe. In: Teilstudie Kupfer. Geologisches Jahrbuch, Vol. Sonderhefte SH 9. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover (1999)Google Scholar
  5. 5.
    Demetrio, S., Ahumada, S.A.J., Durán, M.Á., Mast, E., Rojas, U., Sanhueza, J., Reyes, P., Morales, E.: Slag cleaning: the Chilean copper smelter experience. JOM (2000). doi:  10.1007/s11837-000-0168-z. Accessed 10 July 2017
  6. 6.
    Çoruh, S., Ergun, O.N., Cheng, T.W.: Treatment of copper industry waste and production of sintered glass–ceramic. Waste Manag. Res. 24, 234–241 (2006). Accessed 10 July 2017
  7. 7.
    Gorai, B., Jana, R.K.: Characteristics and utilisation of copper slag—a review. Resour. Conserv. Recycl. 39(4), 299–313 (2003). Accessed 10 July 2017
  8. 8.
    Harish, V., Sreepada, R. A., Suryavanshi, U., Shanmuganathan, P., Sumathy, A.: Assessing the effect of leachate of copper slag from the ISASMELT process on cell growth and proximate components in microalgae, Chlorella vulgaris (Beijerinck). Toxicol. Environ. Chem. 93(7), 1399–1412 (2011). Accessed 10 July 2017
  9. 9.
    Kaksonen, A.H., Lavonen, L., Kuusenaho, M., Kolli, A., Närhi, H., Vestola, E., Puhakka, J.A., Tuovinen, O.H.: Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Miner. Eng. 24(11), 1113–1121 (2011). Accessed 10 July 2017
  10. 10.
  11. 11.
    Pelino, M., Karamanov, A., Aloisi, M., Taglieri, G., Ergun, O.N., Çoruh, S.: Vitrification of copper flotation waste. 2004 Global Symposium on Recycling, Waste Treatment and Clean Technology, Madrid, pp. 525–535 (2004). Accessed 10 July 2017
  12. 12.
    Shanmuganathan, P., Lakshmipathiraj, P., Srikanth, S., Nachiappan, A.L., Sumathy, A.: Toxicity characterization and long-term stability studies on copper slag from the ISASMELT process. Resour. Conserv. Recycl. 52(4), 601–611 (2008). Accessed 10 July 2017
  13. 13.
    Alp, I., Deveci, H., Süngün, H.: Utilization of flotation wastes of copper slag as raw material in cement production. J. Hazard. Mater. 159(2), 390 – 395 (2008). Accessed 10 July 2017
  14. 14.
    Fiedler, H., Hutzinger, O., Lau, C., Cikryt, P., Hosseinpour, J.: Case study of a highly dioxin contaminated sports field: environmental risk assessment and human exposure. J. Hazard. Mater. 43(3), 217–227 (1995). Accessed 10 July 2017
  15. 15.
    Vítková, M., Ettler, V., Mihaljevič, M., Šebek, O.: Effect of sample preparation on contaminant leaching from copper smelting slag. J. Hazard. Mater. 197, 417–423 (2011). Accessed 10 July 2017
  16. 16.
    González, C., Parra, R., Klenovcanova, A., Imris, I., Sánchez, M.: Reduction of Chilean copper slags: a case of waste management project. Scand. J. Metall. (2005). doi:  10.1111/j.1600-0692.2005.00740. Accessed 10 July 2017
  17. 17.
    Murari, K., Siddique, R., Jain, K.K.: Use of waste copper slag, a sustainable material. J. Mater. Cycles Waste Manag. 17(1), 13–26 (2015). Accessed 10 July 2017
  18. 18.
    Onuaguluchi, O., Eren, Ö.: Reusing copper tailings in concrete: corrosion performance and socioeconomic implications for the Lefke-Xeros area of Cyprus. J. Clean. Prod. 112, 420–429 (2016). Accessed 10 July 2017
  19. 19.
    Shi, C., Meyer, C., Behnood, A.: Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 52(10), 1115–1120 (2008). Accessed 10 July 2017
  20. 20.
    Edwin, R.S., De Schepper, M., Gruyaert, E., De Belie, N.: Effect of copper slag as supplementary cementitious material (SCM) in ultra high performance mortar (UHPM). International Conference on Sustainable Structural Concrete (ICSSC 2015), pp. 11–21 (2015). Accessed 10 July 2017
  21. 21.
    Edwin, R.S., De Schepper, M., Gruyaert, E., De Belie, N.: Utilization of copper slag as a cementitious material in reactive powder concrete. 2nd Makassar International Conference on Civil Engineering (MICCE 2015), pp. 203–208. Hasanuddin University (2015). Accessed 10 July 2017
  22. 22.
    Edwin, R.S., Gruyaert, E., Dils, J., De Belie, N.: Influence of vacuum mixing on the carbonation resistance and microstructure of reactive powder concrete containing secondary copper slag as supplementary cementitious material (SCM). Procedia Eng. 171, 534–542 (2017). Accessed 10 July 2017
  23. 23.
    Yasuo, O.: Manufacture of tiles from smelting slags, Jpn Kokai Tokyo Koho, JP 0450 175[9250175], (1992)Google Scholar
  24. 24.
    Sirajiddinov, N.A., Alikulov, A.M., Irkakhodjaeva, A.P.: Effect of copper smelting slag on properties of ceramics. InDokl. Akad. Nauk. Resp. Uzb. 10, 27–29 (1993)Google Scholar
  25. 25.
    Marghussian, V.K., Maghsoodipoor, A.: Fabrication of unglazed floor tiles containing Iranian copper slags. Ceram. Int. 25, 617–622 (1999). Accessed 10 July 2017
  26. 26.
    Yang, Z., Lin, Q., Lu, S., He, Y., Liao, G., Ke, Y.: Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag. Ceram. Int. 40(5), 7297–7305 (2014). Accessed 10 July 2017
  27. 27.
    Kıyak, B., Özer, A., Altundoǧan, H.S., Erdem, M., Tümen, F.: Cr (VI) reduction in aqueous solutions by using copper smelter slag. Waste Manag. 19(5), 333–338 (1999). Accessed 10 July 2017
  28. 28.
    Huanosta-Gutiérrez, T., Dantas, R.F., Ramírez-Zamora, R.M., Esplugas, S.: Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water. J. Hazard. Mater. 213, 325–330 (2012). Accessed 10 July 2017
  29. 29.
    Chu, J., Lim, T.: Use of sewage sludge and copper slag for land reclamation. In: GeoCongress on Geotechnics of Waste Management and Remediation, pp. 352–359 (2008). Accessed 10 July 2017
  30. 30.
    Alum, A., Rashid, A., Mobasher, B., Abbaszadegan, M.: Cement-based biocide coatings for controlling algal growth in water distribution canals. Cem. Concr. Compos. 30(9), 839–847 (2008). Accessed 10 July 2017
  31. 31.
    European Commission—Joint Research Centre—Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook—General guide for Life Cycle Assessment—Detailed guidance. First edition March 2010. EUR 24708453 EN. Luxembourg. Publications Office of the European Union (2010). Accessed 10 July 2017
  32. 32.
    Chowdhury, R., Apul, D., Fry, T.: A life cycle based environmental impacts assessment of construction materials used in road construction. Resour. Conserv. Recycl. 54, 250–255 (2010). Accessed 10 July 2017
  33. 33.
    Lee, K.M., Park, P.J.: Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA. Resour. Conserv. Recycl. 44(2), 139–151 (2005). Accessed 10 July 2017
  34. 34.
    Li, Y., Liu, Y., Gong, X., Nie, Z., Cui, S., Wang, Z., Chen, W.: Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. J. Clean. Prod. 120, 221–230 (2016). Accessed 10 July 2017
  35. 35.
    Mroueh, U., Eskola, P., Laine-Ylijoki, J.: Life cycle impacts of the use of industrial by-products in road and earth construction. Waste Manag. 21, 271–277 (2001). Accessed 10 July 2017
  36. 36.
    Navia, R., Rivela, B., Lorber, K.E., Méndez, R.: Recycling contaminated soil as alternative raw material in cement facilities: life cycle assessment. Resour. Conserv. Recycl. 48(4), 339–356 (2006). Accessed 10 July 2017
  37. 37.
    Saade, M.R.M., Da Silva, M.G., Gomes, V.: Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making. Resour. Conserv. Recycl. 99, 40–47 (2015). Accessed 10 July 2017
  38. 38.
    Schwab, O., Bayer, P., Juraske, R., Verones, F., Hellweg, S.: Beyond the material grave: life cycle impact assessment of leaching from secondary materials in road and earth constructions. Waste Manag. 34(10), 1884–1896 (2014). Accessed 10 July 2017
  39. 39.
    Song, X., Yang, J., Lu, B., Li, B.: Exploring the life cycle management of industrial solid waste in the case of copper slag. Waste Manag. Res. 31(6), 625–633 (2013). Accessed 10 July 2017
  40. 40.
  41. 41.
    Yahaya, N.R., Murad, M., Morad, N., Fizri, F.F.A.: Environmental impact of electricity consumption in crushing and grinding processes of traditional and urban gold mining by using life cycle assessment (LCA). Iran. J. Energy Environ. 3, 66 (2012). Accessed 10 July 2017
  42. 42.
    Kua, H.W.: Attributional and consequential life cycle inventory assessment of recycling copper slag as building material in Singapore. Trans. Inst. Meas. Control. 35(4), 510–520 (2012). Accessed 10 July 2017
  43. 43.
    Kua, H.W.: The consequences of substituting sand with used copper slag in construction—an embodied energy and global warming potential analysis using life cycle approach and different allocation methods. J. Ind. Ecol. 17(6), 869–879 (2013). Accessed 10 July 2017
  44. 44.
    De Schepper, M., Verlé, P., Van Driessche, I., De Belie, N.: Use of secondary slags in completely recyclable concrete. J. Mater. Civ. Eng. 27(5), 04014177 (2014). Accessed 10 July 2017
  45. 45.
    European Commission: Decision 2014/955/EU of the European Parliament and of the Council of 18 December 2014. Off. J. Eur. Union L31, 3–28 (2014). Accessed 10 July 2017
  46. 46.
    European Commission: Regulation No 1357/2014 of the European Parliament and of the Council of 18 December 2014. Off. J. Eur. Union L31, 3–28 (2014). Accessed 10 July 2017
  47. 47.
    Pini, M., Salieri, B., Ferrari, A.M., Nowack, B., Hischier, R.: Human health characterization factors of nano-TiO2 for indoor and outdoor environments. Int. J. Life Cycle Assess. (2016). doi:  10.1007/s11367-016-1115-8. Accessed 10 July 2017
  48. 48.
    Pini, M., Neri, P., Montecchi, R., Bondioli, F., Ferrari, A.M.: Environmental and human health assessment of life cycle of nano TiO2 functionalized porcelain stoneware tile. Sci. Total Environ. 577, 113–121 (2017). Accessed 10 July 2017
  49. 49.
    Ayres, R.U., Ayres, L.W., Råde, I.: The Life Cycle of Copper, Its Co-products and By-products. Springer Science + Business Media, Dordrecht (2003).,+its+co-products+and+byproducts.+Vol.+13.+Springer+Science+%26+Business+Media,+2003&ots=Ag4R23xIMJ&sig=fVp3lCTZbawpe1aSXnX308LlnBA#v=onepage&q&f=false. Accessed 10 July 2017
  50. 50.
    Glöser, S., Soulier, M., Tercero Espinoza, L.A.: Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. Environ. Sci. Technol. 47(12), 6564–6572 (2013). Accessed 10 July 2017
  51. 51.
    Integrated Pollution Prevention and Control (IPPC): Guidelines for National Greenhouse Gas Inventories Vol 3—Chemical Industry Emissions (2006). Accessed 10 July 2017
  52. 52.
    Microsorb Technologies Inc.: Technical Data Sheet Silicon carbide tile for microwave. Microsorb MT SC 400-05. Accessed 10 July 2017
  53. 53.
    Ferrari, A.M., Manicardi, M., Montorsi, M., Neri, P., Pini, M.: LCA di prodotti ceramici, il caso di Emilceramica Spa. University of Modena and Reggio Emilia DISMI Department publication no. 05. Reggio Emilia, Italy (2012)Google Scholar
  54. 54.
    Mohaddes, K.S., Neri, P., Siligardi, C., Ferrari, A.M.: Environmental analysis of ceramic glaze made with copper slag. In the 8th Conference of LCA Italian Network proceedings (2014)Google Scholar
  55. 55.
    ISO 14040: Environmental management—Life cycle assessment—Principles and Framework (2006). Accessed 10 July 2017
  56. 56.
    ISO 14044: Environmental management—Life cycle assessment—Requirements and guidelines (2006). Accessed 10 July 2017
  57. 57.
    European Commission: Directive 2013/35/UE of the European Parliament and the Council of 26 June, concerning the minimum health and safety requirements regarding the exposure of workers to risks arising from electromagnetic fields (2013). Accessed 10 July 2017
  58. 58.
    Nuss, P., Eckelman, M.J.: Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9(7), e101298 (2014). doi:  10.1371/journal.pone.0101298. Accessed 10 July 2017
  59. 59.
    Ecoinvent Centre (formerly Swiss Centre for Life Cycle Inventories): Ecoinvent 3.1 Database. Ecoinvent Centre. ecoinvent data v3.1—cut-off system model—Ecoinvent Association, Zürich (2015). Accessed 10 July 2017
  60. 60.
    Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R.: IMPACT 2002+: a new life cycle impact assessment methodology. Int. J. LCA 8(6), 324–330 (2003). Accessed 10 July 2017
  61. 61.
    Pini, M., Cedillo González, E.I., Neri, P., Siligardi, C., Ferrari, A.M.: Assessment of environmental performance of TiO2 nanoparticles coated self-cleaning float glass. Coatings. (2017). doi:  10.3390/coatings7010008. Accessed 10 July 2017
  62. 62.
    Ferrari, A.M., Pini, M., Neri, P., Bondioli, F.: Nano-TiO2 coatings for limestone: which sustainability for cultural heritage? Coatings. (2015). doi:  10.3390/coatings5030232. Accessed 10 July 2017

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Elisabetta Zerazion
    • 1
    Email author
  • Martina Pini
    • 1
  • Consuelo Mugoni
    • 2
  • Cristina Siligardi
    • 2
  • Paolo Veronesi
    • 2
  • Anna Maria Ferrari
    • 1
  1. 1.DISMI DepartmentUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
  2. 2.DIEF DepartmentUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations