Waste and Biomass Valorization

, Volume 10, Issue 3, pp 561–573 | Cite as

Mathematical Model of Scrap Tire Rubber Pyrolysis in a Non-isothermal Fixed Bed Reactor: Definition of a Chemical Mechanism and Determination of Kinetic Parameters

  • Paola Gauthier-MaradeiEmail author
  • Yeniffer Cely Valderrama
  • Debora Nabarlatz
Original Paper


A chemical reaction mechanism is proposed to describe the pyrolysis of scrap tire rubber based on the decomposition of their three main polymer compounds (natural, butadiene and styrene-butadiene rubbers). Samples of each polymer were tested separately using differential scanning calorimetry (DSC) at the same operating conditions (heating rate, temperature and atmosphere). The thermograms clearly show that the polymer decomposition takes place in two or three thermal steps. The comparison with the literature allowed associating these steps with depolymerization reactions. The DSC results also allowed determining the kinetic parameters for each reaction considered in the chemical mechanism proposed in this study. Consequently, these were included in a mathematical model developed for a fixed bed reactor (at laboratory-scale) considering mass and energy balances. The experimental conversion obtained in TGA at operating conditions of pyrolysis using scrap tire rubber as feedstock, were successful confronted with those simulated by the mathematical model obtaining a determination coefficient (R2) of 0.97. On the other hand, the mathematical model predicts correctly the influence of the temperature in the product yields, being this variable the most statistically significant in the process, being in agreement with ANOVA results ((p value < 0.001 at confidence level of 95%) allowing a good prediction of the product yields.


Thermal degradation Kinetic reaction model Reaction mechanism DSC analysis 



The authors are grateful to Vicerrectoría de Investigación y Extensión from Universidad Industrial de Santander for research funding (Grant number 5457). Y. Cely is grateful to Colciencias for the Young Researcher scholarship.


  1. 1.
    Acosta, R., Tavera, C., Gauthier-Maradei, P., Nabarlatz, D.: Production of oil and char by intermediate pyrolysis of scrap tyres: influence on yield and product characteristics. Int. Chem. J. React. Eng. 13(2), 189–200 (2015)Google Scholar
  2. 2.
    Tang, Y., Curtis, C.W.: Thermal and catalytic coprocessing of waste tires with coal. Fuel Process Tech. 46(3), 195–215 (1996)CrossRefGoogle Scholar
  3. 3.
    Saraf, S., Marsh, J. A., Cha, C. Y., Guffrey, F. D.: Reactive coprocessing of scrap tires and heavy oil. Resour. Conserv Recycl. 13(1), 1–13 (1995)CrossRefGoogle Scholar
  4. 4.
    Narobe, M., Golob, J., Klinar, D., Francetic, V., Likozar, B.: Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances. Bioresource Technol. 162, 21–29 (2014)CrossRefGoogle Scholar
  5. 5.
    Pipilikaki, P., Katsioti, M., Papageorgiou, D., Fragoulis, D., Chaniatokis, E.: Use of tire derived fuel in clinker burning. Cem. Concr. Compos. 27(7–8), 843–847 (2005)CrossRefGoogle Scholar
  6. 6.
    Ospina, J.A., Villada, S.: Methods to characterize liquid and gas combustibles obtain from the useless tyres throw the ASTM norms. Lámpsakos, 3(6), 23–31 (2011)CrossRefGoogle Scholar
  7. 7.
    Conesa, J.A., Font, R., Fullana, A., Martín-Gullón, I., Aracil, I., Gálvez, A., Moltó, J., Gómez-Rico, M. F.: Comparison between emissions from the pyrolysis and combustion of different wastes. J. Anal. Appl. Pyrol. 84, 95–102 (2009)CrossRefGoogle Scholar
  8. 8.
    Lah, B., Klinar, B., Likozar, B.: Pyrolysis of natural, butadiene, styrene–butadiene rubber and tyre components: modelling kinetics and transport phenomena at different heating rates and formulations. Chem. Eng. Sci. 87, 1–13 (2013)CrossRefGoogle Scholar
  9. 9.
    Lee, Y. S., Lee, W., Seong-Gyu, C., Chan-Sik Ha, I.L. K.: Quantitative analysis of unknown compositions in ternary polymer blends: a model study on NR/SBR/BR systems. J. Anal. Appl. Pyrol. 78, 85–94 (2007)CrossRefGoogle Scholar
  10. 10.
    Mancilla, M.A., Silva, L., Salgueiro, W., Marzocca, A., Somoza, A.: Thermal behavior in natural rubber/styrene butadiene rubber blends. a study using DSC. Anales AFA 22, 28–31 (2010)CrossRefGoogle Scholar
  11. 11.
    Park, S., Gloyna, E. F.: Statistical-study-of-the-liquefaction-of-used-rubber-tyre-in-supercritical-water. Fuel 76(11), 999–1003 (1997)CrossRefGoogle Scholar
  12. 12.
    Kyari, M., Cunliffe, A., Williams, P. T.: Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy Fuels 19, 1165–1173 (2005)CrossRefGoogle Scholar
  13. 13.
    Aylón, E., Callen, M.S., López, J.M., Mastral, A.M., Murillo, R., Navarro, M.V., Stelmach, S.: Assessment of tire devolatilization kinetics. J. Anal. Appl. Pyrol. 74, 259–264 (2005)CrossRefGoogle Scholar
  14. 14.
    Leung, D. Y. C., Wang, C. L.: Kinetic modeling of scrap tire pyrolysis. Energy Fuels 13(2), 421–427 (1999)CrossRefGoogle Scholar
  15. 15.
    Quek, A., Balasubramanian, R.: An algorithm for the kinetics of tire pyrolysis under different heating rates. J. Hazard. Mater. 166(1), 126–132 (2009)CrossRefGoogle Scholar
  16. 16.
    Wendlandt, W. W.: Thermal analysis, 3rd edn. Wiley, New York (1986)Google Scholar
  17. 17.
    Miranda, M., Pinto, F., Gulyurtu, I., Cabrita, I.: Pyrolysis of rubber tyre wastes: a kinetic study. Fuel 103, 542–552 (2013)CrossRefGoogle Scholar
  18. 18.
    Lanteighne, J.-R., Laviolette, J.-P., Tremblay, G., Chaouki, J.: Predictive kinetics model for an industrial waste tire pyrolysis process. Energy Fuels 27, 1040–1049 (2013)CrossRefGoogle Scholar
  19. 19.
    Lopez, G., Aguado, R., Olazar, M., Arabiourrutia, M., Bilbao, J.: Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Manag. 29, 2649–2655 (2009)CrossRefGoogle Scholar
  20. 20.
    Seidelt, S., Muller-Hagedorn, M., Bockhorn, H.: Description of tire pyrolysis by thermal degradation behavior of main components. J. Anal. Appl. Pyrol. 75(1), 11–18 (2006)CrossRefGoogle Scholar
  21. 21.
    Cheung, K.-Y., Lee, K.-L., Lam, K.-L., Lee, C.-W., Hui, C.-W.: Integrated kinetics and heat flow modeling to optimize waste tyre pyrolysis at different heating rates. Fuel Process. Technol. 92, 856–863 (2011)CrossRefGoogle Scholar
  22. 22.
    Fernández, A. M., Barriocanal, C., Alvarez, R.: (2012). Pyrolysis of a Waste from the grinding of scrap tyres. J. Hazard. Mater. 203–204, 236–243CrossRefGoogle Scholar
  23. 23.
    Martínez, O., Calvo, L. F., Morán, A.: Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Manag. 24(5), 463–469 (2004)CrossRefGoogle Scholar
  24. 24.
    Conesa, J., Gullón, I. M., Font, R., Jauhiainen, J.: Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environ. Sci. Technol. 38(11), 3189–3194 (2004)CrossRefGoogle Scholar
  25. 25.
    Acosta, R. A., Moncada, S. J., Gauthier-Maradei, P., Nabarlatz, D.: Estudio preliminar de la producción de aceite y carbón mediante pirólisis intermedia de caucho de llantas usadas. Rev. Investig. Univ. Quindío 24(1), 139–145 (2013)Google Scholar
  26. 26.
    Yang, J., Roy, C.: A new method for DTA measurement of enthalpy change during the pyrolysis of rubbers. Thermochim. Acta 288, 155–168 (1996)CrossRefGoogle Scholar
  27. 27.
    Napoli, A., Soudais, Y., Lecomte, D., Castillo, S.: Scrap tire pyrolysis: experiment and modeling. J. Anal. Appl. Pyrol. 373, 40–41 (1997)Google Scholar
  28. 28.
    Pyle, D. L., Zaror, C.A.: Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem. Eng. Sci. 39(1), 147–158 (1984)CrossRefGoogle Scholar
  29. 29.
    Giwa, A., Giwa, S.O.: Application of Crank-Nicolson finite-difference method to the solution of the dynamic model of a reactor. Int. J. Adv. Sci. Tech. Res. 3(6), 613–623 (2013)Google Scholar
  30. 30.
    Gonzalez, J. F., Encinar, J. M., Canito, J. L., Rodríguez, J. J.: (2001). Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J. Anal. App. Pyrol. 58–59(3), 667–668CrossRefGoogle Scholar
  31. 31.
    Murillo, R., Aylón, E., Navarro, M. V., Callén, M. S., Aranda, A., Mastral, A.M.: The application of thermal processes to valorise waste tyre. Fuel Process. Technol. 87, 143–147 (2006)CrossRefGoogle Scholar
  32. 32.
    Michael, W.R.: Quality performance factors for tire-derived materials. In: De, S. K., Isayev, A.I., Khait, K. (eds.) Rubber recycling. Taylor & Francis Group, Boca Raton (2005)Google Scholar
  33. 33.
    Leung, D., Wang, C.: Kinetic study of scrap tyre pyrolysis and combustion. J. Anal. App. Pyrol. 45, 153–169 (1998)CrossRefGoogle Scholar
  34. 34.
    Danon, B., Van der Gryp, P., Schwarz, C.E., Gogerns, J. F.: A review of dipentene (dl-limonene) production from waste tire pyrolysis. J. Anal. App. Pyrol. 112, 1–13 (2015)CrossRefGoogle Scholar
  35. 35.
    Martínez, J. D., Puy, N., Murillo, R., García, T., Navarro, M. V., Mastral, A. M.: Waste tyre pyrolysis. A review. Renew. Sustain. Energ. Rev. 23, 179–213 (2013)CrossRefGoogle Scholar
  36. 36.
    Chen, F., Qian, J.(: Studies on the thermal degradation of cis-1,4-polyisoprene. Fuel 81, 2071–2077 (2002)CrossRefGoogle Scholar
  37. 37.
    Kar, Y.: Catalytic pyrolysis of car tire waste using expanded perlite. Waste Manag. 31, 1772–1782 (2011)CrossRefGoogle Scholar
  38. 38.
    Danon, B., Görgens, J.: Determining rubber composition of waste tyres using devolatilization kinetics. Thermochim. Acta 621, 56–60 (2015)CrossRefGoogle Scholar
  39. 39.
    Choi, S.-S.: Characteristics of the pyrolysis patterns of styrene-butadiene rubbers with differing microstructures. J. Anal. Appl. Pyrol. 62, 319–330 (2002)CrossRefGoogle Scholar
  40. 40.
    Peterson, J. D., Vyazovkin, S., Wight, C. A.: Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromol. Chem. Phys. 202, 775–784 (2001)CrossRefGoogle Scholar
  41. 41.
    Aguado, R., Olazar, M., Vélez, D., Arabiourrutia, M., Bilbao, J.: Kinetics of scrap tyre pyrolysis under fast heating conditions. J. Anal. Appl. Pyrol. 73, 290–298 (2005)CrossRefGoogle Scholar
  42. 42.
    Danon, B., Mkhize, N.M., van der Gryp, P., Görgens, J.F.: Combined model-free and model-based devolatilization kinetics of tyre rubbers B. Thermochim. Acta 601, 45–53 (2015)CrossRefGoogle Scholar
  43. 43.
    Conesa, J., Marcilla, A.: Kinetic study of the thermogravimetric behavior of different rubbers. J. Anal. Appl. Pyrol.. 37, 95–110 (1996)CrossRefGoogle Scholar
  44. 44.
    Ucar, S., Karagoz, S., Ozkan, A. R., Yanik, J.: Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 84, 1884–1892 (2005)CrossRefGoogle Scholar
  45. 45.
    Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., García-Bacaicoa, P.: Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: analysis of the gases obtained. J. Anal. Appl. Pyrol. 74, 245–253 (2005)CrossRefGoogle Scholar
  46. 46.
    Williams, P.T.: Pyrolysis of waste tyres: a review. Waste Manag. 33, 1714–1728 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Interfase, Escuela de Ingeniería QuímicaUniversidad Industrial de SantanderBucaramangaColombia

Personalised recommendations