Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 2, pp 287–297 | Cite as

Characterization, Surface Properties and Biological Activities of Protein Hydrolysates Obtained from Hake (Merluccius merluccius) Heads

  • Wafa Karoud
  • Assaâd Sila
  • Fatma Krichen
  • Oscar Martinez-Alvarez
  • Ali BougatefEmail author
Original Paper

Abstract

The present study reports the surface and antioxidant properties, as well as the angiotensin-I converting enzyme (ACE) inhibitory activity of protein hydrolysates (HHPHs) from European hake (Merluccius merluccius) heads and obtained with Savinase®. Hake heads protein hydrolysates contained high protein content between 84.75 and 87.92% and a high percentage of essential amino acids. They have a high nutritional value and could be used as supplement in poorly balanced dietary proteins. All protein hydrolysates possessed interesting surface properties, which were governed by their concentrations Hake heads protein hydrolysates displayed a high ACE inhibitory activity. The IC50 values recorded for the ACE inhibitory activity of all HHPHs varied between 0.24 and 1.4 mg/mL. Therefore, HHPHs can be used as a promising source of functional peptides with good surface and biological properties.

Keywords

Merluccius merluccius Heads Protein hydrolysates Surface properties Biological activities 

References

  1. 1.
    Sila, A., Bougatef, A.: Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J. Funct. Foods 21, 10–26 (2016)CrossRefGoogle Scholar
  2. 2.
    Sila, A., Nedjar-Arroume, N., Hedhili, K., Chataigné, G., Balti, R., Nasri, M., Dhulster, P., Bougatef, A.: Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT Food Sci. Technol. 55, 183–188 (2014a)CrossRefGoogle Scholar
  3. 3.
    Zhao, Y., Li, B., Dong, S., Liu, Z., Zhao, X., Wang, J., Zeng, M.: A novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. Peptides 30, 1028–1033 (2009)CrossRefGoogle Scholar
  4. 4.
    Lahl, W.J., Braun, S.D.: Enzymatic production of protein hydrolysates for food use. Food Technol. 48, 68–71 (1994)Google Scholar
  5. 5.
    Bougatef, A., Balti, R., Haddar, A., Jellouli, K., Souissi, N., Nasri, M.: Protein hydrolysates from bluefin tuna (Thunnus thynnus) heads as influenced by the extent of enzymatic hydrolysis. Biotechnol. Bioprocess Eng. 17, 841–852 (2012)CrossRefGoogle Scholar
  6. 6.
    Balti, R., Bougatef, A., Sila, A., Guillochon, D., Dhulster, P., Nedjar-Arroume, N.: Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chem. 170, 519–525 (2015)CrossRefGoogle Scholar
  7. 7.
    Sayari, N., Sila, A., Haddar, A., Balti, R., Ellouz-Chaabouni, S., Bougatef, A.: Valorisation of smooth hound (Mustelus mustelus) waste biomass through recovery of functional, antioxidative and antihypertensive bioactive peptides. Environ. Sci. Pollut. Res. 23, 366–376 (2016)CrossRefGoogle Scholar
  8. 8.
    FAO.: The state of world fisheries and aquaculture 2016, The FAO Fisheries and Aquaculture Department, Rome (2016)Google Scholar
  9. 9.
    DGPA.: Directorate-general for fisheries and aquaculture, Ministry of Agriculture, Water Ressources and Fisherie, Tunisia, (2015)Google Scholar
  10. 10.
    Khoufi, W., Elleboode, R., Jaziri, H., El Fehri, S., Bellamy, E., Meriem, Ben, Romdhane, S., Mahé, M.S.: K.: Growth of hake juveniles (Merluccius merluccius) from the Northern coast of Tunisia, determined from otolith microstructure. Bull. Soc. Zool. Fr. 37, 245–256 (2012)Google Scholar
  11. 11.
    Adler-Nissen, J.: A review of food hydrolysis specific area. In: Enzymatic hydrolysis of food proteins, pp. 57–109. Elsevier, Copenhagen (1986)Google Scholar
  12. 12.
    AOAC.: Official methods of analysis. (17th edn.). Association of Official Analytical, Gaithersburg (2000)Google Scholar
  13. 13.
    Lin, M.H.Y., Humbert, E.S., Sosulki, F.W.: Certain functional properties of sunflower meal products. J. Food Sci. 39, 368–370 (1974)CrossRefGoogle Scholar
  14. 14.
    Shahidi, F., Han, X.Q., Synowiecki, J.: Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53, 285–293 (1995)CrossRefGoogle Scholar
  15. 15.
    Pearce, K.N., Kinsella, J.E.: Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26, 716–723 (1978)CrossRefGoogle Scholar
  16. 16.
    Bersuder, P., Hole, M., Smith, G.: Antioxidants from a heated histidine glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high performance liquid chromatography. J. Am. Oil Chem. Soc. 75, 181–187 (1998)CrossRefGoogle Scholar
  17. 17.
    Koleva, I.I., Van Beek, T.A., Linssen, J.P.H., de Groot, A., Evstatieva, L.N.: Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem. Anal. 13, 8–17 (2002)CrossRefGoogle Scholar
  18. 18.
    Yildirim, A., Mavi, A., Kara, A.A.: Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem. 49, 4083–4089 (2001)CrossRefGoogle Scholar
  19. 19.
    Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., Takano, T.: Purification and characterization of angiotensin I-converting-enzyme inhibitors from sour milk. J. Dairy Sci. 78, 777–783 (1995)CrossRefGoogle Scholar
  20. 20.
    Dathe, M., Schumann, M., Wieprecht, T., Winkler, A., Beyermann, M., Krause, E., Matsuzaki, K., Murase, O., Bienert, M.: Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. BioChemistry 35, 12612–12620 (1996)CrossRefGoogle Scholar
  21. 21.
    Kristinsson, H.G., Rasco, B.A.: Fish protein hydrolysates: production, biochemical and functional properties. Crit. Rev. Food Sci. Nutr. 40, 43–81 (2000)CrossRefGoogle Scholar
  22. 22.
    Klomklao, S., Kishimura, H., Benjakul, S.: Use of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minuta) muscle. Food Chem. 136, 1006–1012 (2013)CrossRefGoogle Scholar
  23. 23.
    Benjakul, S., Morrissey, M.T.: Protein hydrolysates from Pacific whiting solid wastes. J. Agric. Food Chem. 45, 3423–3430 (1997)CrossRefGoogle Scholar
  24. 24.
    Usydus, Z., Szlinder-Richert, J., Adamczyk, M.: Protein quality and amino acid profiles of fish products available in Poland. Food Chem. 112, 139–145 (2009)CrossRefGoogle Scholar
  25. 25.
    Nikoo, M., Benjakul, S., Rahmanifarah, K.: Hydrolysates from marine sources as cryoprotective substances in seafoods and seafood products. Trends Food Sci. Technol. 57, 40–51 (2016)CrossRefGoogle Scholar
  26. 26.
    Shahidi, F., Ambigaipalan, P.: Novel functional food ingredients from Marine Sources. Curr. Opin. Food Sci. 2, 123–129 (2015)CrossRefGoogle Scholar
  27. 27.
    Atef, M., Ojagh, S.M.: Health benefits and food applications of bioactive compounds from fish byproducts: a review. J. Funct. Foods 35, 673–681 (2017)CrossRefGoogle Scholar
  28. 28.
    Chalamaiah, M., Dinesh-kumar, B., Hemalatha, R., Jyothirmayi, T.: Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chem. 135, 3020–3038 (2012)CrossRefGoogle Scholar
  29. 29.
    Kim, S.K., Mendis, E.: Bioactive compounds from marine processing byproducts—a review. Food Res. Interface 39, 383–393 (2006)CrossRefGoogle Scholar
  30. 30.
    Chi, Z., Liu, G.L., Lu, Y., Jiang, H., Chi, Z.M.: Bio-products produced by marine yeasts and their potential applications. Bioresour. Technol. 202, 244–252 (2016)CrossRefGoogle Scholar
  31. 31.
    Sila, A., Sayari, N., Balti, R., Martinez-Alvarez, O., Nedjar-Arroume, N., Nasri, M., Bougatef, A.: Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 148, 445–452 (2014b)CrossRefGoogle Scholar
  32. 32.
    Kong, X., Zhou, H., Qian, H.: Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chem. 101, 615–620 (2007)CrossRefGoogle Scholar
  33. 33.
    Jost, R., Monti, J.C., Pahud, J.J.: Partial enzymatic hydrolysis of whey protein by trypsin. J. Dairy Sci. 60, 1387–1393 (1977)CrossRefGoogle Scholar
  34. 34.
    Fonkwe, L.G., Singh, R.K.: Protein recovery from mechanically deboned turkey residue by enzymic hydrolysis. Process Biochem. 31, 605–616 (1996)CrossRefGoogle Scholar
  35. 35.
    Klompong, V., Benjakul, S., Kantachote, D., Shahidi, F.: Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102, 1317–1327 (2007)CrossRefGoogle Scholar
  36. 36.
    Faithong, N., Benzakul, S., Phatcharat, S., Binsan, W.: Chemical composition and antioxidative activity of Thai traditional fermented shrimp and krill products. Food Chem. 119, 133–140 (2010)CrossRefGoogle Scholar
  37. 37.
    Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Shahidi, F.: Inhibition of angiotensin converting enzyme, human LDL cholesterol and DNA oxidation by hydrolysates from blacktip shark gelatin. LWT Food Sci. Technol. 51, 177–182 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Wafa Karoud
    • 1
  • Assaâd Sila
    • 1
  • Fatma Krichen
    • 1
  • Oscar Martinez-Alvarez
    • 2
  • Ali Bougatef
    • 1
    Email author
  1. 1.Laboratoire d’Amélioration des Plantes et Valorisation des AgroressourcesUniversité de SfaxSfaxTunisia
  2. 2.Institute of Food ScienceTechnology and Nutrition (ICTAN, CSIC)MadridSpain

Personalised recommendations