Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 2, pp 311–317 | Cite as

Lipase-Catalyzed Solvent-Free Esterification of Furan Containing Components

  • Y. Satyawali
  • V. Akemeier
  • W. Dejonghe
  • H. De Wever
  • W. Van HeckeEmail author
Short Communication

Abstract

Furan derivatives represent an interesting set of bio-sourced substrates for esterification reactions. However, the use of lipases for the production of furan containing esters is underexploited. Solvent-free lipase catalyzed esterification of several furan containing chemicals was investigated and remarkably high conversion percentages were obtained for the esterification of furfuryl alcohol with equimolar quantities of fatty acids tested in this study.

Graphical Abstract

Keywords

(Tetrahydro)furfuryl alcohol Lipase Solvent-free esterification 

Notes

Acknowledgements

This work was funded by the 7th Framework Programme of the European Union (BioConSepT Contract No. 289194) and by Flanders Innovation and Entrepreneurship (FISCH-ICON Catalisti project HBC.2016.0502 Enzymase). Bart Noten and Pieter Vloemans are acknowledged for the analytical work. Professor Björn Frahm from the University of Applied Sciences Ostwestfalen-Lippe (Faculty of Life Science Technologies) is acknowledged for providing support for conducting the master thesis of Volker Akemeier in Belgium.

Supplementary material

12649_2017_60_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 44 KB)

References

  1. 1.
    Adlercreutz, P.: Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42(15), 6406–6436 (2013). doi: 10.1039/c3cs35446f CrossRefGoogle Scholar
  2. 2.
    Gandini, A.: Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym. Chem. 1(3), 245–251 (2010). doi: 10.1039/b9py00233b CrossRefGoogle Scholar
  3. 3.
    Sang, S., Wang, Y., Zhu, W., Xiao, G.: Selective hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol over Ni/γ-Al2O3 catalysts. Res. Chem. Intermediat. 43(2), 1179–1195 (2016). doi: 10.1007/s11164-016-2691-8 CrossRefGoogle Scholar
  4. 4.
    Franssen, M.C.R., Steunenberg, P., Scott, E.L., Zuilhof, H., Sanders, J.P.M.: Immobilised enzymes in biorenewables production. Chem. Soc. Rev. 42(15), 6491–6533 (2013). doi: 10.1039/C3CS00004D CrossRefGoogle Scholar
  5. 5.
    Mukherjee, S., Ghosh, M.: Studies on performance evaluation of a green plasticizer made by enzymatic esterification of furfuryl alcohol and castor oil fatty acid. Carbohydr. Polym. 157, 1076–1084 (2017). doi: 10.1016/j.carbpol.2016.10.075 CrossRefGoogle Scholar
  6. 6.
    Mathpati, A.C., Badgujar, K.C., Bhanage, B.M.: Kinetic modeling and docking study of immobilized lipase catalyzed synthesis of furfuryl acetate. Enzyme Microb. Technol. 84, 1–10 (2016). doi: 10.1016/j.enzmictec.2015.12.003 CrossRefGoogle Scholar
  7. 7.
    Ansorge-Schumacher, M.B., Thum, O.: Immobilised lipases in the cosmetics industry. Chem. Soc. Rev. 42(15), 6475–6490 (2013)CrossRefGoogle Scholar
  8. 8.
    Cruz-Izquierdo, Á., van den Broek, L.A.M., Serra, J.L., Llama, M.J., Boeriu, C.G.: Lipase-catalyzed synthesis of oligoesters of 2,5-furandicarboxylic acid with aliphatic diols. Pure Appl. Chem. 87(1), (2015). doi: 10.1515/pac-2014-1003

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Business Unit Separation and Conversion TechnologyFlemish Institute for Technological Research (VITO)MolBelgium

Personalised recommendations