Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 1, pp 131–142 | Cite as

Two-Stage Anaerobic Digestion of Meat Processing Solid Wastes: Methane Potential Improvement with Wastewater Addition and Solid Substrate Fermentation

  • Nesrine Handous
  • Hana Gannoun
  • Moktar Hamdi
  • Hassib BouallaguiEmail author
Original Paper

Abstract

Anaerobic digestion of slaughterhouse solid wastes (SSW) and wastewater (SWW) was investigated with different mixture ratios (M1: 25% SSW/75% SWW, M2: 50% SSW/50% SWW and M3: 75% SSW/25% SWW) in sequencing batch reactors at organic loading rates (OLRs) of 0.8, 1.6 and 3.2 kg VS m− 3 day− 1. The best methane production potential (MPP) and volatile solids (VS) removal yield of 0.38 m3 kg VSadded−1 and 86%, respectively, were obtained with the mixture M1 corresponding to the highest wastewater proportion. In fact, dilution improved the hydrolysis of organic compounds, which are hardly degraded by fermentative bacteria. For this reason, a biological pretreatment of the mixture M3 by solid substrate fermentation (SSF) using the endogenous microflora was performed. Therefore, the methanogens activity was improved significantly. At high OLR, the MPP and the VS removal yield increased by 52 and 22.7%, respectively. Results showed that the biological pre-treatment (SSF), using Bacillus and Lactobacillus bacteria, integrated to the anaerobic digestion process is an attractive strategy to improve the bioconversion of organic fraction of slaughterhouse wastes into methane.

Graphical Abstract

Keywords

Anaerobic digestion Slaughterhouse wastes Biological pretreatment Ammonia inhibition 

Notes

Acknowledgements

The authors wish to acknowledge the Ministry of Higher Education and Scientific Research in Tunisia, which has facilitated the carried work.

References

  1. 1.
    Toumi, J., Milad, I.B., Farhat, A., Nouira, S., Hamdi, M., Gtari, M., Bouallagui, H.: Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle manure and use in agriculture of obtained bio-fertilisers. Bioresour. Technol. 198, 141–149 (2015)CrossRefGoogle Scholar
  2. 2.
    Alvarez, L., Lidén, G.: Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew. Energy. 33, 726–734 (2008)CrossRefGoogle Scholar
  3. 3.
    Hamawand, I.: Anaerobic digestion process and bio-energy in meat industry: a review and a potential. Renewable Sustainable Energy Rev. 44, 37–51 (2015)CrossRefGoogle Scholar
  4. 4.
    Bayr, S., Rantanen, M., Kapaau, P., Rintala, J.: Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes. Bioresour. Technol. 104, 28–36 (2012)CrossRefGoogle Scholar
  5. 5.
    Buendía, I.M., Fernández, F.J., Villaseñor, J., Rodríguez, L.: Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresour. Technol. 100, 1903–1909 (2009)CrossRefGoogle Scholar
  6. 6.
    Izumi, K., Okishio, Y., Nagao, N., Niwa, C., Yamamoto, S., Toda, T.: Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegrad. 64, 601–608 (2010)CrossRefGoogle Scholar
  7. 7.
    Hejnfelt, A., Angelidaki, I.: Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy. 33, 1046–1054 (2009)CrossRefGoogle Scholar
  8. 8.
    Rodríguez-Abalde, A., Fernàndez, B., Silvestre, G., Flotats, X.: Effects of thermal pre-treatments on solid slaughterhouse waste methane potential. Waste Manag. 31, 1488–1493 (2011)CrossRefGoogle Scholar
  9. 9.
    Flores-Juarez, C.R., Rodríguez-García, A., Cárdenas-Mijangos, J., Montoya-Herrera, L., Mora-Tovar, L.A.G., Bustos-Bustos, E., Rodríguez-Valadez, F., Manríquez-Rocha, J.: Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion. J. Biosci. Bioeng. 118, 415–419 (2014)CrossRefGoogle Scholar
  10. 10.
    Bhargav, S., Panda, B. P., Ali, M., Javed, S.: Solid-state fermentation: an overview. Chem. Biochem. Eng. Q. 22, 49–70 (2008)Google Scholar
  11. 11.
    Marcos, A., Al-Kassir, A., Mohamad, A.A., López-Rodríguez, F., Cuadros, F.: Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes. Appl. Energy. 87, 1729–1735 (2010)CrossRefGoogle Scholar
  12. 12.
    Naik, L., Gebreegziabher, Z., Tumwesige, V., Balana, B., Mwirigi, J., Austion, G.: Factors determining the stability and productivity of small scale anaerobic digesters. Biomass Bioenergy 70, 51–57 (2014)CrossRefGoogle Scholar
  13. 13.
    Soares, C.M.F., De Castro, H.F., De Moares, F.F., Zanin, G.M.: Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl. Biochem. Biotechnol. 79, 745–757 (1999)CrossRefGoogle Scholar
  14. 14.
    APHA: Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington DC (1998)Google Scholar
  15. 15.
    AOAC: Official methods of analysis of AOAC International, 17th ed. 2nd revision, Association of Analytical Communities, Gaithersburg (2003)Google Scholar
  16. 16.
    Gannoun, H., Bouallagui, H., Okbi, A., Sayadi, S., Hamdi, M.: Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J. Hazard. Mater. 170, 263–271 (2009)CrossRefGoogle Scholar
  17. 17.
    Piard, J.C., Desmazeaud, M.: Inhibiting factors produced by lactic acid bacteria. 1.0xygen metabolites and catabolism end-products. Lait 71, 525–541 (1991)CrossRefGoogle Scholar
  18. 18.
    Prakasham, R.S., Rao, Ch.S.,. Rao, R.S., Sarma, P.N.: Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agro industrial waste: process parameters optimization. Biotechnol. Prog. 21, 1380–1388 (2005)CrossRefGoogle Scholar
  19. 19.
    Skolpap, W., Nuchprayoon, S., Scharer, J.M., Grisdanurak, N., Douglas, P.L., Moo-Young, M.: Fed-batch optimization of alpha-amylase and protease-producing Bacillus subtilis using Markov chain methods. Chem. Eng. Sci. 63, 4090–4099 (2008)CrossRefGoogle Scholar
  20. 20.
    Ravichandra, P., Subhakar, C., Annapurna, J.: Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis CIM-2042: effect of aeration and agitation regimes. J. Biochem. Eng. 34, 185–192 (2007)CrossRefGoogle Scholar
  21. 21.
    Kumar, S., Kikon, K., Upadhyay, A., Kanwar, S.S., Gupta, R.: Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3, Protein Expr. Purif. 41, 38–44 (2005)CrossRefGoogle Scholar
  22. 22.
    Lou, F.X., Nair, J., Ho, G.: Influence of food waste composition and volumetric water dilution on methane generation kinetics. Int. J. Environ. Prot. 2, 22–29 (2012)Google Scholar
  23. 23.
    Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F.: The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag. 32, 1634–1650 (2012)CrossRefGoogle Scholar
  24. 24.
    Luste, S., Luostarinen, S., Sillanpaa, M.: Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry. J. Hazard. Mater. 164, 247–255 (2009)CrossRefGoogle Scholar
  25. 25.
    Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L.: Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99, 7928–7940 (2008)CrossRefGoogle Scholar
  26. 26.
    Franke-Whittle, I.H., Walter, A., Ebner, C., Insam, H.: Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 34, 2080–2089 (2014)CrossRefGoogle Scholar
  27. 27.
    Bouallagui, H., Rachdi, B., Gannoun, H., Hamdi, M.: Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation 20, 401–409 (2009)CrossRefGoogle Scholar
  28. 28.
    Barampouti, E.M., Mai, S.T., Vlyssides, A.G.: Dynamic modeling of the ratio volatile fatty acids/bicarbonate alkalinity in a UASB reactor for potato processing wastewater treatment. Environ. Monit. Assess. 110, 121–128 (2005)CrossRefGoogle Scholar
  29. 29.
    Garcia, M.L., Angenent, L.T.: Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Res. 43, 2373–2382 (2009)CrossRefGoogle Scholar
  30. 30.
    Cuetos, M.J., Gomez, X., Otero, M., Moran, A.: Anaerobic digestion of solid slaughterhouse waste (SHW) at laboratory scale: influence of co-digestion with the organic fraction of municipal solid waste (OFMSW). Biochem. Eng. J. 40, 99–106 (2008)CrossRefGoogle Scholar
  31. 31.
    Sutaryo, S., Ward, A.J., Moller, H.B.: Ammonia inhibition in thermophilic anaerobic digestion of cattle manure. J. Indonesian. Trop. Anim. Agric. 39, 83–90 (2014)CrossRefGoogle Scholar
  32. 32.
    Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process. Biochem. 48, 901–911 (2013)CrossRefGoogle Scholar
  33. 33.
    Chen, Y., Cheng, J.I., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008)CrossRefGoogle Scholar
  34. 34.
    Mata-Alvarez, J., Macé, S., Llabrés, P.: Anaerobic digestion of organic solid wastes. an overview of research achievements and perspectives. Bioresour. Technol. 74, 116–123 (2000)CrossRefGoogle Scholar
  35. 35.
    Gebrezgabher, S.A., Meuwissen, M.P.M., Prins, B.A.M., Oude Lansink, A.G.J.M.: Economic analysis of anaerobic digestion-A case of green power biogas plant in the Netherland. NJAS-Wagening. J. Life Sci. 57, 109–115 (2010)Google Scholar
  36. 36.
    Cano, R., Nielfa, A., Fdz-Polanco, M.: Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study. Bioresour. Technol. 168, 14–22 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Nesrine Handous
    • 1
  • Hana Gannoun
    • 1
  • Moktar Hamdi
    • 1
  • Hassib Bouallagui
    • 1
    Email author
  1. 1.LR-Microbial Ecology and Technology, INSATUniversity of CarthageTunisTunisia

Personalised recommendations