Waste and Biomass Valorization

, Volume 10, Issue 2, pp 407–415 | Cite as

Comparison of Kinetic Models for Carbon Dioxide and Steam Gasification of Rice Husk Char

  • David G. F. AdamonEmail author
  • Latif A. Fagbémi
  • Ammar Bensakhria
  • Emile A. Sanya
Original Paper


This study reports carbon conversion rate calculated from the online gas analysis obtained from rice husks char gasification by using carbon dioxide and steam as reactive gases. Rice husks char is produced by the pyrolysis of rice husks in a muffle furnace at 450 °C during 45 min. The gasification tests are carried out at several temperatures 900, 950 and 1000 °C by using carbon dioxide and steam under isothermal conditions. The volume reaction model (VRM), shrinking core model (SCM) and random pore model (RPM) are studied to interpret obtained experimental data. Kinetic parameters such as activation energy (E) and pre-exponential factors (A) are determined from gas-analysis data by using Arrhenius equation. From results confrontation, between experimental data and obtained results from used models, it is found that RPM agrees better with experimental data than the other two models. We also obtained an activation energy of 165.8 kJ/mol and pre-exponential factor of 2595.4 s−1 for Ψ equal to 3.8 for carbon dioxide gasification and, respectively, 152.9 kJ/mol and 3473.4 s−1 from Ψ = 2.16 for steam gasification.


Conversion rate char Kinetics Model Reactivity Biomass 


  1. 1.
    International Energy Agency: Biomass energy data, analysis and trends. West Africa (1988)Google Scholar
  2. 2.
    International Energy Agency: World Energy Outlook. West Africa (2010)Google Scholar
  3. 3.
    Blein, R., Bio, G.S., Benoît, F.D., Borgui, Y.: Agricultural potentialities of West Africa, Benin (2008)Google Scholar
  4. 4.
    Direction of the Statistics of the Ministry for Agriculture, the Breeding and of Sins: Evolution of the vegetable production of 1995–2013, Benin (2013)Google Scholar
  5. 5.
    Yatopa, A.B., Sakariyou, M., Koffi, A.: Project to develop the Benin starting from the renewable sources of energies: identification and cartography of the potentialities and matched renewable sources of energy of the possibilities of exploitation, final report-PNUD (2010)Google Scholar
  6. 6.
    Beagle, E.C.: Husk conversion to energy. Agric. Serv. Bull. 31, Rome- Italy (1978)Google Scholar
  7. 7.
    Luan, T.C., Chou, T.C.: Recovery of silica from the gasification of rice husks/coal in the presence of a pilot flame in a modified fluidized bed. Ind. Eng. Chem. Res. 29(9), 1922–1927 (1990). doi: 10.1021/ie00105a026 CrossRefGoogle Scholar
  8. 8.
    Tangsathitkulchai, C., Junpirom, S., Katesa, J.: Comparison of kinetic models for CO2 gasification of coconut-shell chars: carbonization temperature effect on char reactivity and porous properties of produced activated carbons. Inst. Eng. Eng. J. (2013). doi: 10.4186/ej.2013.17.113 Google Scholar
  9. 9.
    Bhat, A., Ram Bheemarasetti, J.V., Rajeswara Rao, T.: Kinetics of rice husk char gasification. Energy Convers. Manag. 42, 2061–2069 (2001). doi: 10.1016/S0196-8904(00)00173-4 CrossRefGoogle Scholar
  10. 10.
    Kramb, J., Konttinen, J., Gomez-Barea, A., Moilanen, A., Umeki, K.: Modeling biomass char gasification kinetics for improving prediction of carbon conversion in a fluidized bed gasifier. Fuel 132, 107–115 (2014). doi: 10.1016/j.fuel.2014.04.014 CrossRefGoogle Scholar
  11. 11.
    Kajitani, S., Suzuki, N., Ashizawa, M., Hara, S.: CO2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel 85, 163–169 (2006). doi: 10.1016/j.fuel.2005.07.024 CrossRefGoogle Scholar
  12. 12.
    Ollero, P., Serreva, A., Arjona, R., Alcantarilla, S.: The CO2 gasification kinetics of olive residue. Biomass Bioenergy 24(2), 151–161 (2003). doi: 10.1016/S0961-9534(02)0091-0 CrossRefGoogle Scholar
  13. 13.
    Alvaez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M.: Kinetic study of carbon dioxide gasification of rice husk fast pyrolysis char. Energy Fuel 29(5), 3198–3207 (2015). doi: 10.1021/acs.energyfuels.5b00318 CrossRefGoogle Scholar
  14. 14.
    Mahinpey, N., Gomez, A.: Review of gasification fundamentals and new findings: Reactor, feedstock and kinetic studies. Chem. Eng. Sci. 148, 14–31 (2016). doi: 10.1016/j.ces.2016.03.037 CrossRefGoogle Scholar
  15. 15.
    Gao, X., Zhang, Y., Li, B., Zhao, Y., Jiang, B.: Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using Random Pore Model. Bioresour. Technol. 218, 1073–1081 (2016). doi: 10.1016/j.biortech.2016.07.057 CrossRefGoogle Scholar
  16. 16.
    Collard, F.X., Blein, J., Bensakhria, A., Valette, J.: Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J. Anal. Appl. Pyrolysis. 95, 213–226 (2012). doi: 10.1016/j.jaap.2012.02.009 CrossRefGoogle Scholar
  17. 17.
    Moors, J.H.J.: Pulverized char combustion and gasification at high temperatures and pressures. Ph.D. Dissertation, Eindoven University of Technology (1998)Google Scholar
  18. 18.
    Everson, R.C., Neomagus, H., Kaitano, R., Falcon, R., Cann, V.M.: Properties of high ash coal-char particles derived from inertinite-rich coal: II. Gasification kinetics with carbon dioxide. Fuel 87(15–16), 3403–3408 (2008). doi: 10.1016/j.fuel.2008.05.019 CrossRefGoogle Scholar
  19. 19.
    Tang, L., Wang, J., Wu, Y.: Gasification reactivity of coal with lower ash melting point at high temperature. J. East China Univ. Sci. Technol. 29, 341–345 (2003)Google Scholar
  20. 20.
    Fagbemi, L.: Experimental and theoretical study of the gasification stages: application to the molar composition of the gas. Thesis, analysis of industrial processes at University of Technology of Compiegne/France (1985)Google Scholar
  21. 21.
    Di Blasi, C.: Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 35(2), 121–140 (2009). doi: 10.1016/j.pecs.2008.08.001 CrossRefGoogle Scholar
  22. 22.
    Seo, D.K., Lee, S.K., Kang, M.W., Hwang, J., Yu, T.U.: Gasification reactivity of biomass chars with CO2. Biomass Bioenergy. 34(12), 1946–1953 (2010). doi: 10.1016/j.biombioe.2010.08.008 CrossRefGoogle Scholar
  23. 23.
    Ishida, M., Wen, C.Y.: Comparison of zone-reaction model and unreacted-core shrinking model in solid-gas reactions. Chem. Eng. Sci. 26(7), 1031–1041 (1971). doi: 10.1016/0009-2509(71)80017-9 CrossRefGoogle Scholar
  24. 24.
    Szekely, J., Evans, J.W.: A structural model for gas-solid reactions with a moving boundary. Chem. Eng. Sci. 25(6), 1091–1107 (1970). doi: 10.1016/0009-2509(70)85053-9 CrossRefGoogle Scholar
  25. 25.
    Fermoso, J., Stevanov, C., Moghtaderi, B., Arias, B., Pevida, C., Plaza, M.G., Rubiera, F., Pis, J.J.: High pressure gasification reactivity of biomass chars produced at different temperatures. J. Anal. Appl. Pyrolysis 85, 287–293 (2009). doi: 10.1016/j.jaap.2008.09.017 CrossRefGoogle Scholar
  26. 26.
    Zhang, J.L., Wang, G.W., Shao, J.G., Zuo, H.B.: A modified random pore model for kinetics of char gasification. BioResource 9(2), 3497–3507 (2014). doi: 10.15376/biores.9.2.3497-3507 Google Scholar
  27. 27.
    Lin, L., Strand, M.: Investigation of the intrinsic carbon dioxide gasification kinetics of biomass char at medium to high temperature. Appl. Energy 109, 220–228 (2013). doi: 10.1016/j.apenergy.2013.04.027 CrossRefGoogle Scholar
  28. 28.
    Gil, M.V., Fermoso, J., Pevida, C., Pis, J., Rubiera, F.: Intrinsic char reactivity of plastic waste (PET) during carbon dioxide gasification. Fuel Process. Technol. 91, 1776–1781 (2010). doi: 10.1016/j.fuproc.2010.07.019 CrossRefGoogle Scholar
  29. 29.
    Xu, R.S., Zhang, J.L., Wang, G.W., Zuo, H.B., Zhang, P.C., Shao, J.G.: Gasification behaviours and kinetic study on biomass chars in carbon dioxide condition. Chem. Eng. Res. Des. 107, 34–42 (2015). doi: 10.1016/j.cherd.2015.10.014 CrossRefGoogle Scholar
  30. 30.
    Lane, D. M.: Standard error of the estimate, online statistics education: A multimedia course of study (2012)Google Scholar
  31. 31.
    Gomez-Barea, A., Ollero, P., Fernandez-Baco, C.: Diffusional effects in CO2 gasification experiments with single biomass char particles: experimental investigation. Energy Fuels 20(5), 2202–2210 (2006). doi: 10.1021/ef050365a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • David G. F. Adamon
    • 1
    • 2
    Email author
  • Latif A. Fagbémi
    • 2
  • Ammar Bensakhria
    • 1
  • Emile A. Sanya
    • 2
  1. 1.Royallieu Research Center - GPI-EA 4297 TIMRSorbonne University, University of Technology of CompiegneCompiegne CedexFrance
  2. 2.Calavi-Laboratories of Applied Energetics and Mechanics (LEMA) - Calavi-Polytechnic School of AbomeyUniversity of AbomeyCotonou BéninFrance

Personalised recommendations