Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 1, pp 143–154 | Cite as

A Novel Synthesis Method of Zeolite X From Coal Fly Ash: Alkaline Fusion Followed by Ultrasonic-Assisted Synthesis Method

  • Ozgul Dere Ozdemir
  • Sabriye PiskinEmail author
Original Paper

Abstract

This study was focused on synthesis of zeolite X from coal fly ash using the alkaline fusion method coupled with a novel method which uses ultrasonic energy for aging step. Optimum conditions were investigated using the Taguchi experimental design method. Synthesized zeolitic products were characterized by X-ray diffractometry, scanning electron microscopy, surface area, and cation exchange capacity analysis. Aging time was reduced from 24 to 2 h with usage of ultrasonic energy. Due to high surface area and similar crystal and morphological properties of the final products, we propose that the synthesized zeolitic products can serve as commercially competitive available material.

Graphical Abstract

Keywords

Coal fly ash Fusion Synthesis Ultrasonic Zeolite 

References

  1. 1.
    Jayaranjan, M.L.D., van Hullebusch, E.D., Annachhatre, A.P.: Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Biotechnol. 13, 467–486 (2014)CrossRefGoogle Scholar
  2. 2.
    Wang, S., Zhang, C., Chen, J.: Utilization of coal fly ash for the production of glass-ceramics with unique performances: a brief review. J. Mater. Sci. Technol. 30(12), 1208–1212 (2014)CrossRefGoogle Scholar
  3. 3.
    Longhurst, J.W.S., Brebbia, C.A.: Air pollution XXI. WIT Press, Southamptan (2013)CrossRefGoogle Scholar
  4. 4.
    Raja, A.K., Shriwastava, A.P., Dwivedi, M.: Power plant engineering. New Age International, New Delhi (2006) (e- book).Google Scholar
  5. 5.
    Ahmaruzzaman, M.: A review on the utilization of fly ash. Prog. Energy Combust. 36, 327–363 (2010)CrossRefGoogle Scholar
  6. 6.
    Blissett, R.S., Rowson, N.A.: A review of the multi-component utilisation of coal fly ash. Fuel 97, 1–23 (2012)CrossRefGoogle Scholar
  7. 7.
    Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q.: A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 141, 105–121 (2015)CrossRefGoogle Scholar
  8. 8.
    Vassilev, S.V., Vassileva, C.G.: Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview. Energy Fuels 19, 1084–1098 (2005)CrossRefGoogle Scholar
  9. 9.
    Franus, W., Wdowin, M., Franus, M.: Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 186, 5721–5729 (2014)CrossRefGoogle Scholar
  10. 10.
    Bandura, L., Franus, M., Jozefaciuk, G., Franus, W.: Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100–107 (2015)CrossRefGoogle Scholar
  11. 11.
    Inglezakis, V.J., Zorpas, A.A.: Handbook of Natural Zeolites. Bentham Science Publishers, Dubai (2012) (e-book).CrossRefGoogle Scholar
  12. 12.
    Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M.R., Bonilla-Petriciolet, A.: Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manage. 116, 213–221 (2013)CrossRefGoogle Scholar
  13. 13.
    Yi, H., Deng, H., Tang, X., Yu, Q., Zhou, X., Liu, H.: Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. J. Hazard. Mater. 203–204, 111–117 (2012)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Lin, F., Pang, W.: Ion exchange of ammonium in natural and synthesized zeolites. J. Hazard. Mater. 160(2–3), 371–375 (2008)CrossRefGoogle Scholar
  15. 15.
    Mohamed, R.M., Ismail, A.A., Kini, G., Ibrahim, I.A., Koopman, B.: Synthesis of highly ordered cubic zeolite A and its ion-exchange behavior. Coll. Surf. A 348(1–3), 87–92 (2009)CrossRefGoogle Scholar
  16. 16.
    Jensen, N.K., Rufford, T.E., Watson, G., Zhang, D.K., Chan, K.I., May, E.F.: Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57, 106–113 (2012)CrossRefGoogle Scholar
  17. 17.
    Aguado, S., Bergeret, G., Daniel, C., Farrusseng, D.: Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc. 134, 14635–14637 (2012)CrossRefGoogle Scholar
  18. 18.
    Widayatno, W.B., Guan, G., Rizkiana, J., Du, X., Hao, X., Zhang, Z., Abudul, A.: Selective catalytic conversion of bio-oil over high-silica zeolites. Bioresour. Technol. 179, 518–523 (2015)CrossRefGoogle Scholar
  19. 19.
    Narayanan, S., Vijaya, J.J., Sivasanker, S., Kennedy, L.J., Jesudoss, S.K.: Structural, morphological and catalytic investigations on hierarchical ZSM-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method. Powder Technol. 274, 338–348 (2015)CrossRefGoogle Scholar
  20. 20.
    Ríos, R.C.A., Williams, C.D., Roberts, C.L.: A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites. Fuel 88, 1403–1416 (2009)CrossRefGoogle Scholar
  21. 21.
    Koshy, N., Singh, D.N.: Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 4, 1460–1472 (2016)CrossRefGoogle Scholar
  22. 22.
    Jha, B., Singh, D.N.: Fly ash zeolites: ınnovations, applications, and directions, applications of fly ash zeolites: case studies. Springer, Singapore (2016)Google Scholar
  23. 23.
    Tanaka, H., Matsumura, S., Furusawa, S., Hino, R.: Conversion of coal fly ash to Na-X zeolites. J Mater. Sci. Lett. 22, 323–325 (2003)CrossRefGoogle Scholar
  24. 24.
    Höller, H., Wirsching, U.: Zeolite formation from fly ash. Fortschr. Mineral. 63, 21–43 (1985)Google Scholar
  25. 25.
    Remenàrovà, L., Pipíška, M., Florkovà, E., Horník, M., Rozložník, M., Augustín, J.: Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol. Environ. Policy 16, 1551–1564 (2014)CrossRefGoogle Scholar
  26. 26.
    Behin, J., Bukhari, S.S., Kazemian, H., Rohani, S.: Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite. Fuel 171, 195–202 (2016)CrossRefGoogle Scholar
  27. 27.
    Kazemian, H., Naghdali, Z., Kashani, T.G., Farhadi, F.: Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Adv. Powder Technol. 21, 279–283 (2010)CrossRefGoogle Scholar
  28. 28.
    Ojha, K., Pradhan, N.C., Samanta, A.N.: Zeolite from fly ash: synthesis and characterization. Bull. Mater. Sci. 27(6), 555–564 (2004)CrossRefGoogle Scholar
  29. 29.
    Belviso, C., Cavalcante, F., Huertas, F., Lettino, J., Ragone, A., Fiore, P.S.: The crystallization of zeolite (X- and A- type) from fly ash at 25 °C in artificial sea water. Microporous Mesoporous Mater. 162, 115–121 (2012)CrossRefGoogle Scholar
  30. 30.
    Ameh, A.E., Fatoba, O.O., Musyoka, N.M., Petrik, L.F.: Influence of aluminium source on the crystal structure and framework coordination of Al and Si in fly ash-based zeolite NaA. Powder Technol. 306, 17–25 (2017)CrossRefGoogle Scholar
  31. 31.
    Bukhari, S.S., Behin, J., Kazemian, H., Rohani, S.: A comparative study using direct hydrothermal and indirect fusion methods to produce zeolites from coal fly ash utilizing single-mode microwave energy. J. Mater. Sci. 49, 8261–8271 (2014)CrossRefGoogle Scholar
  32. 32.
    Behin, J., Bukhari, S.S., Dehnavi, V., Kazemian, H., Rohani, S.: Using coal fly ash and wastewater for microwave synthesis of LTA zeolite. Chem. Eng. Technol. 37(9), 1532–1540 (2014)CrossRefGoogle Scholar
  33. 33.
    Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Andres, J.M., Juan, R., Ferrer, P., Ruiz, C.R.: A fast method for recycling fly ash: microwave-assisted zeolite synthesis. Environ. Sci. Technol. 31, 2527–2533 (1997)CrossRefGoogle Scholar
  34. 34.
    Inada, M., Tsujimoto, H., Educhi, Y., Enomoto, N., Hojo, J.: Microwave-assisted zeolite synthesis from coal fly ash in hydothermal process. Fuel 84, 1482–1486 (2005)CrossRefGoogle Scholar
  35. 35.
    Fukui, K., Arai, K., Kanayama, K., Yoshida, H.: Phillipsite synthesis from fly ash prepared by hydrothermal treatment with microwave heating. Adv. Powder Technol. 17(4), 369–382 (2006)CrossRefGoogle Scholar
  36. 36.
    Tanaka, H., Fujimoto, S., Fujii, A., Hino, R., Kawazoe, T.: Microwave assisted two-step process for rapid synthesis of Na-A zeolite from coal fly ash. Ind. Eng. Chem. Res. 47, 226–230 (2008)CrossRefGoogle Scholar
  37. 37.
    Kim, J.K., Lee, H.D.: Effects of step change of heating source on synthesis of zeolite 4A from coal fly ash. J. Ind. Eng. Chem. 15, 736–742 (2009)CrossRefGoogle Scholar
  38. 38.
    Belviso, C., Cavalcante, F., Lettino, A., Fiore, S.: Effects of ultrasonic treatment on zeolite synthesized from coal fly ash. Ultrason. Sonochem. 18, 661–668 (2011)CrossRefGoogle Scholar
  39. 39.
    Belviso, C., Cavalcante, F., Fiore, S.: Ultrasonic waves induce rapid zeolite synthesis in a seawater solution. Ultrason. Sonochem. 20, 32–36 (2013)CrossRefGoogle Scholar
  40. 40.
    Wang, S., Zhu, Z.H.: Sonochemical treatment of fly ash for dye removal from wastewater. J. Hazard. Mater. 126, 91–95 (2005)CrossRefGoogle Scholar
  41. 41.
    Musyoka, N.M., Petrik, L.F., Hums, E.: Ultrasonic assisted synthesis of zeolite A from coal fly ash using mine waters (acid mine drainage and circum neutral mine water) as a substitute for ultrapure water. Aachen: “Mine Water-Managing the Challenges (IMWA 2011). pp. 423–428 (2011)Google Scholar
  42. 42.
    Askari, S., Alipour, S.M., Halladj, R., Farahan, MHDA.: Effects of ultrasound on the synthesis of zeolites: a review. J. Porous Mater. 20, 285–302 (2013)CrossRefGoogle Scholar
  43. 43.
    Ojumu, T.V., Plessis, P.W., Petrik, L.F.: Synthesis of zeolite A from coal fly ash using ultrasonic treatment-A replacement for fusion step. Ultrason. Sonochem. 31, 342–349 (2016)CrossRefGoogle Scholar
  44. 44.
    Bukhari, S.S., Behin, J., Kazemian, H., Rohani, S.: Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 140, 250–266 (2015)CrossRefGoogle Scholar
  45. 45.
    Bukhari, S., Rohani, S., Kazemian, S.H.: Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash. Ultrason. Sonochem. 28, 47–53 (2016)CrossRefGoogle Scholar
  46. 46.
    Aldahri, T., Behin, J., Kazemiana, H., Rohani, S.: Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment. Fuel 182, 494–501 (2016)CrossRefGoogle Scholar
  47. 47.
    Nika, O.G., Sadrzadeh, M., Kaliaguine, S.: Surface grafting of FAU/EMT zeolite with (3-aminopropyl) methyldiethoxysilane optimized using Taguchi experimental design. Chem. Eng. Res. Des. 90, 1313–1321 (2012)CrossRefGoogle Scholar
  48. 48.
    Ding, L., Zheng, Y., Hong, Y., Ring, Z.: Effect of particle size on the hydrothermal stability of zeolite beta. Microporous Mesoporous Mater. 101, 432–439 (2007)CrossRefGoogle Scholar
  49. 49.
    Srivastava, V.C., Mall, I.D., Mishra, I.M.: Multicomponent adsorption study of metal ions onto bagasse fly ash using Taguchi’s design of experimental methodology. Ind. Eng. Chem. Res. 46, 5697–5706 (2007)CrossRefGoogle Scholar
  50. 50.
    Park, S.H.: Robust design and analysis for quality engineering. Chapman&Hall, London (1996)Google Scholar
  51. 51.
    Fowlkes, W.Y., Creveling, C.M. In: Wesner, J. (ed.) “Introduction to quality engineering”, engineering methods for robust product design, using Taguchi methods in technology and product development. Addison-Wesley Publishing, Boston (1995)Google Scholar
  52. 52.
    Gross-Lorgouilloux, M., Soulard, M., Caullet, P., Patarin, J., Moleiro, E., Saude, I.: Conversion of coal fly ashes into faujasite under soft temperature and pressure conditions: influence of additional silica. Microporous Mesoporous Mater. 127(1–2), 41–49 (2010)CrossRefGoogle Scholar
  53. 53.
    Bettinelli, M., Beone, G.M., Spezia, S., Baffi, C.: Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Anal. Chim. Acta 424, 289–296 (2000)CrossRefGoogle Scholar
  54. 54.
    EPA SW-846 Method 9081. U.S. Environmental Protection Agency. Cation-exchange capacity of soils (sodium acetate) (1986)Google Scholar
  55. 55.
    Chen, Y., Xu, T., Xie, C., Han, H., Zhao, F., Zhang, J., Song, H., Wang, B.: Pure zeolite Na-P and Na-X prepared from coal fly ash under the effect of steric hindrance. J. Chem. Technol. Biotechnol. 91, 2018–2025 (2016)CrossRefGoogle Scholar
  56. 56.
    Chunfeng, W., Jiansheng, L., Xia, S., Lianjun, W., Xiuyun, S.: Evaluation of zeolites synthesized from fly as has potential adsorbents for wastewater containing heavy metals. J. Environ. Sci. 21, 127–136 (2009)CrossRefGoogle Scholar
  57. 57.
    Chunfeng, W., Jiansheng, L., Lianjun, W., Xiuyun, S., Jiajia, H.: Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies. Chin. J. Chem. Eng. 17(3), 513–521 (2009)CrossRefGoogle Scholar
  58. 58.
    Moutsatsou, A., Stamatakis, E., Hatzitzotzia, K., Protonotarios, V.: The utilization of Ca-rich and Ca–Si-rich fly ashes in zeolites production. Fuel. 85, 657–663 (2006)CrossRefGoogle Scholar
  59. 59.
    ASTM C 618-12-a (2012) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM, PhiladelphiaGoogle Scholar
  60. 60.
    Pengthamkeerati, P., Satapanajaru, T., Chularuengoaksorn, P.: Chemical modification of coal fly ash for the removal of phosphatefrom aqueous solution. Fuel 87, 2469–2476 (2008)CrossRefGoogle Scholar
  61. 61.
    Dargahi, M., Kazemian, H., Soltanieh, M., Hosseinpour, M., Rohani, S.: High temperature synthesis of SAPO-34: applying an L9 Taguchi orthogonal design to investigate the effects of experimental parameters. Powder. Technol. 217, 223–230 (2012)CrossRefGoogle Scholar
  62. 62.
    Cundy, C.S., Cox, P.A.: The Hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 82, 1–78 (2005)CrossRefGoogle Scholar
  63. 63.
    Zubowa, H., Kosslick, H., Muller, D., Richter, M., Wilde, L., Fricke, R.: Crystallization of phase-pure zeolite NaP from MCM-22-type gel compositions under microwave radiation. Microporous Mesoporous Mater. 109, 542–548 (2008)CrossRefGoogle Scholar
  64. 64.
    El-Naggar, M.R., El-Kamash, A.M., El-Dessouky, M.I., Ghonaim, A.K.: Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. J. Hazard. Mater. 154, 963–972 (2008)CrossRefGoogle Scholar
  65. 65.
    Kalvachev, Y., Zgureva, D., Boycheva, S., Barbov, B., Petrova, N.: Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. J. Therm. Anal. Calorim. 124, 101–106 (2016)CrossRefGoogle Scholar
  66. 66.
    Espejel-Ayala, F., Schouwenaars, R., Dura ´n-Moreno, A.: Ramı ´rez-Zamora, R.M: Use of drinking water sludge in the production process of zeolites. Res. Chem. Intermed. 40, 2919–2928 (2014)CrossRefGoogle Scholar
  67. 67.
    Tosheva, L., Brockbank, A., Mihailova, B., Sutula, J., Ludwig, J., Potgieter, H., Verran, J.: Micron-and nanosized FAU-type zeolites from fly ash for antibacterial applications. J. Mater. Chem. 22, 16897–16905 (2012)CrossRefGoogle Scholar
  68. 68.
    Liu, L., Singh, R., Xiao, P., Webley, P.A., Zhai, Y.: Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption 17, 795–800 (2011)CrossRefGoogle Scholar
  69. 69.
    He, K., Chen, Y., Tang, Z., Hu, Y.: Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ. Sci. Pollut. Res. 23, 2778–2788 (2016)CrossRefGoogle Scholar
  70. 70.
    Fotovat, F., Kazemian, H., Kazemeini, M.: Synthesis of Na-A and faujasitic zeolites from high silicon fly ash. Mater. Res. Bull. 44, 913–917 (2009)CrossRefGoogle Scholar
  71. 71.
    Ruen-ngam, D., Rungsuk, D., Apiratikul, R., Pavasant, P.: Zeolite formation from coal fly ash and its adsorption potential. J. Air Waste Manage. Assoc. 59, 1140–1147 (2009)CrossRefGoogle Scholar
  72. 72.
    Cullity, B.D.: Elements of X-Ray diffraction, 3rd edn. Addison-Wesley Publishing Company Inc, Massachusetts (1967)Google Scholar
  73. 73.
    Lee, H.J., Kim, Y.M., Kweon, O.S., Kim, I.J.: Structural and morphological transformation of NaX zeolite crystals at high temperature. J. Eur. Ceram. Soc. 27, 561–564 (2007)CrossRefGoogle Scholar
  74. 74.
    Lee, H.J., Kim, Y.M., Kweon, O.S., Kim, I.J.: Crystal growing and reaction kinetic of large NaX zeolite crystals. J. Eur. Ceram. Soc. 27, 581–584 (2007)CrossRefGoogle Scholar
  75. 75.
    Izidoro, J.C., Fungaro, D.A., Abbott, J.E., Wang, S.: Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel 103, 827–834 (2013)CrossRefGoogle Scholar
  76. 76.
    Molina, A., Poole, C.: A comparative study using two methods to produce zeolites from fly ash. Miner. Eng. 17, 167–173 (2004)CrossRefGoogle Scholar
  77. 77.
    Tanaka, H., Furusawa, S., Hino, R.: Synthesis, characterization, and formation process of Na-X zeolite from coal fly ash. J. Mater. Synth. Process 10(3), 143–148 (2002)CrossRefGoogle Scholar
  78. 78.
    Brassell, P.J., Ojumu, T.V., Petrik, L.F.: Upscaling of zeolite synthesis from coal fly ash waste: current status and future outlook. Zeolites-Useful Minerals. Intech (2016). doi: 10.5772/63792

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations