Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 1, pp 75–83 | Cite as

Effect of Minimizing d-Limonene Compound on Anaerobic Co-digestion Feeding Mixtures to Improve Methane Yield

  • A. CarvalhoEmail author
  • R. Fragoso
  • J. Gominho
  • E. Duarte
Original Paper
  • 70 Downloads

Abstract

The purpose of this work was to assess the enhancement of the anaerobic digestion process of sewage sludge by the addition of orange peel as co-substrate. In this experimental study, an evaluation of the co-digestion process in a semi-continuous stirred tank reactor was carried out under mesophilic conditions (37 ± 0.2 °C) during an operation time up to 315 days. All trials were performed at a hydraulic retention time of 15 days and the AD reactor was fed daily with a mixture of sewage sludge and orange peel pulp, previously prepared. The organic loading rate was kept at 1.80 ± 0.31 g VS L−1 day−1 in all trials. A reference scenario (T0), mono-digestion, was performed using sewage sludge as substrate (primary sludge and activated sludge, 40:60, v/v). Thereafter, two different anaerobic co-digestion trials were carried out, one with pre-treated orange peel (T1) and the other with reduced d-limonene content (T2). Trials with pre-treated orange peel (T1 and T2) led to two- and threefold improvements in biogas and methane yields, compared with the reference scenario (T0). Furthermore, the reduction of d-Limonene content (T2) increased the methane yield by around 70% compared with T1. Therefore, it was proved that the sieving pre-treatment is effective to avoid the inhibitory effect of d-limonene.

Keywords

Anaerobic co-digestion Municipal sludge Orange peel d-Limonene Methane yield Inhibition 

Notes

Funding

This work was supported by the Linking Landscape, Environment, Agriculture and Food (LEAF) research unit (UID/AGR/04129/2013); and Centro de Estudos Florestais (CEF) (PEst-OE/AGR/UI0239/2014).

References

  1. 1.
    Koppar, A., Pullammanappallil, P.: Anaerobic digestion of peel waste and wastewater for on-site energy generation in a citrus processing facility. Energy. 60, 62–68 (2013). doi: 10.1016/j.energy.2013.08.007 CrossRefGoogle Scholar
  2. 2.
    Calabrò, P.S., Pontoni, L., Porqueddu, I., Greco, R., Pirozzi, F., Malpei, F.: Effect of the concentration of essential oil on orange peel waste mechanisation: preliminary batch results. Waste Manag.. 48, 440–447 (2016). doi: 10.1016/j.wasman.2015.10.032 CrossRefGoogle Scholar
  3. 3.
    Wikandary, R., Nguyen, H., Millati, R., Miklasson, C., Taherzadeh, M.: Improvement of biogas production from orange peel waste by leaching of limonene. BioMed Res. Int. (2015). doi: 10.1155/2015/494182 Google Scholar
  4. 4.
    Sanjaya, A.P., Cahyanto, M.N., Millati, R.: Mesophilic batch anaerobic digestion from fruit fragments. Renew. Energy. (2016). doi: 10.1016/j.renene.2016.02.059 Google Scholar
  5. 5.
    Siles, J., Vargas, F., Gutiérrez, M., Chica, A., Martín, M.A.: Integral valorisation of waste orange peel using combustion, biomethanization and co-composting technologies. Bioresour. Technol. 211, 173–182 (2016). doi: 10.1016/j.biortech.2016.03.056 CrossRefGoogle Scholar
  6. 6.
    Santi, G., Crognale, S., D’Annibale, A., Petruccioli, M., Ruzzi, M., Valentini, R., Moresi, M.: Orange peel treatment in novel lab-scale direct steam-injection apparatus for ethanol production. Biomass Bioenerg. 61, 146–156 (2014). doi: 10.1016/j.biombioe.2013.12.007 CrossRefGoogle Scholar
  7. 7.
    Lopresto, C., Petrillo, F., Casazza, A., Aliakbarian, P., Calabrò, V.: A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Sep. Purif. Technol. 134, 13–20 (2014). doi: 10.1016/j.seppur.2014.09.015 CrossRefGoogle Scholar
  8. 8.
    Ruiz, B., Flotats, X.: Effect of limonene on batch anaerobic digestion of citrus peel waste. Biochem. Eng. J. 109, 9–18 (2016). doi: 10.1016/j.bej.2015.12.011 CrossRefGoogle Scholar
  9. 9.
    Martin, M.A., Siles, J.A., Chica, A.F., Martin, A.: Biomethanization of orange peel waste. Bioresour. Technol. 101, 8993–8999 (2010). doi: 10.1016/j.biortech.2010.06.133 CrossRefGoogle Scholar
  10. 10.
    Ruiz, B., Flotats, X.: Citrus essential oils and their influence on the anaerobic digestion process: an overview. Waste Manag. (Oxford). 34(11), 2063–2079 (2014). doi: 10.1016/j.wasman.2014.06.026 CrossRefGoogle Scholar
  11. 11.
    Luo, H., Liu, X., Anderson, B., Zhang, K., Li, X., Huang, B., Li, M., Mo, Y., Fan, L., Shen, Q., Chen, F., Jiang, M.: Carbon sequestration potential of green roofs using mixed-sewage-sludge substrate in Chengdu World Modern Garden City. Ecol. Indic. 49, 247–259 (2015). doi:  10.1016/j.ecolind.2014.10.016 CrossRefGoogle Scholar
  12. 12.
    Silvestre, G., Bonmatí, A., Fernandéz, B.: Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: effect of collection system and particle size. Waste Manag. 43, 137–143 (2015). doi: 10.1016/j.wasman.2015.06.029 CrossRefGoogle Scholar
  13. 13.
    Zhang, Q., Hu, J., Lee, D.: Biogas from anaerobic digestion processes: research updates. Renew. Energy. (2016). doi: 10.1016/j.renene.2016.02.029 Google Scholar
  14. 14.
    Pavlík, Z., Fǒrt, J., Záleská, M., Pavlíková, M., Tmík, A., Medved, I., Keppert, M., Koutsoukos, P., Černý, R.: Energy-efficient thermal treatment of sewage sludge for its application in blended cements. J. Cleaner Prod. 112, 409–419 (2016). doi: 10.1016/j.jclepro.2015.09.072 CrossRefGoogle Scholar
  15. 15.
    Liao, X., Zhu, S., Zhang, D., Zhu, J., Liao, L.: Anaerobic co-digestion of food waste and landfill leachate in single-phase batch reactors. Waste Manag. 34, 2278–2284 (2014). doi: 10.1016/j.wasman.2014.06.014 CrossRefGoogle Scholar
  16. 16.
    Park, K., Jang, H., Park, M., Lee, K., Kim, D., Kim, Y.: Combination of different substrates to improve anaerobic digestion of sewage sludge in a wastewater treatment plant. Int. Biodeterior. Biodegrad. 109, 73–77 (2016). doi: 10.1016/j.ibiod.2016.01.006 CrossRefGoogle Scholar
  17. 17.
    Elsayed, M., Andres, Y., Blel, W., Gad, A., Ahmed, A.: Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Convers. Manag. 117, 538–547 (2016). doi: 10.1016/j.enconman.2016.03.064 CrossRefGoogle Scholar
  18. 18.
    Yalcinkaya, S., Malina, J.: Anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste for assessing direct feed of grease trap waste in municipal digesters. Int. Biodeterior. Biodegrad. 104, 490–497 (2015). doi: 10.1016/j.ibiod.2015.08.007 CrossRefGoogle Scholar
  19. 19.
    Kondusamy, D., Kalamdhad, A.: Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J. Environ. Chem. Eng. 2, 1821–1830 (2014). doi: 10.1016/j.jece.2014.07.024 CrossRefGoogle Scholar
  20. 20.
    Koppar, A., Pullammanappallil, P.: Anaerobic digestion of peel waste and wastewater for on site energy generation in a citrus processing facility. Energy. 60, 62–68 (2013). doi: 10.1016/j.energy.2013.08.007 CrossRefGoogle Scholar
  21. 21.
    Figastiva, H., Tremier, A., Dabert, P.: Characterizing the variability of food waste quality: a need for efficient valorization through anaerobic digestion. Waste Manage. 50, 264–274 (2016). doi: 10.1016/j.wasman.2016.01.041 CrossRefGoogle Scholar
  22. 22.
    Hidaka, T., Wang, F., Tsumori, J.: Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modelling. Waste Manage.. 43, 144–151 (2015). doi: 10.1016/j.wasman.2015.04.026 CrossRefGoogle Scholar
  23. 23.
    Kaparaju, P., Rintala, J.A.: Thermophilic anaerobic digestion of industrial orange waste. Environ. Technol. 27(6), 623–633 (2006). doi: 10.1080/09593332708618676 CrossRefGoogle Scholar
  24. 24.
    Utama, I., Made, S., Will, R.B.H., Ben-yehoshua, S., Kuek, C.: In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J. Agric. Food Chem. 50(22), 623–633 (2006). doi: 10.1021/jf020484d.2002 Google Scholar
  25. 25.
    Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F.: The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manage. 32(9), 1634–1650 (2012). doi: 10.1016/j.wasman.2012.04.016 CrossRefGoogle Scholar
  26. 26.
    Zhou, J., Zhang, R., Liu, F., Yong, X., Wu, X., Zheng, T., Yiang, M., Jia, H.: Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour. Technol. (2016). doi: 10.1016/j.biortech.2016.02.077 Google Scholar
  27. 27.
    APHA: American Public Health Association: Standard Methods for the Examination of Water and Wastewater, 22nd Edition. American Public Health Association, Washington DC (2012)Google Scholar
  28. 28.
    Andrade, A., Rauber, L., Mafra, A., Baretta, D., Rosa, M., Friederichs, A., Mafra, M., Casara, A.: Changes in physical properties and organic carbon of a Kandiudox fertilized with manure. Ciência Rural, Santa Maria. 46(5), 809–814 (2016). doi: 10.1590/0103-8478cr20150540 CrossRefGoogle Scholar
  29. 29.
    Parry, D.L., Filmore, L.: Overcoming barriers to codigestion. Water Pract. Technol. 11(2), 413–422 (2016). doi: 10.2166/wpt.2016.039 CrossRefGoogle Scholar
  30. 30.
    Amador, J., Nelsen, D., McPherson, C., Evans, P., Parry, D., Stenser, D., Hykes, T.: Anaerobic digestion and energy recovery from food waste. Proc. Water Environ. Fed. 2012, 118–128 (2012)CrossRefGoogle Scholar
  31. 31.
    Zamanzadeh, M., Hagen, L., Svenson, K., Linjordet, R., Horn, S.: Anaerobic digestion of food waste—effect of recirculation and temperature on performance and microbiology. Water Res. (2016). doi: 10.1016/j.watres.2016.03.058 Google Scholar
  32. 32.
    Astals, S., Esteban-Gutiérrez, M., Fernández-Arévalo, T., Aymerich, E., García-Heras, J.L., Mata-Alvarez, J.: Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study. Water Res. 47, 6033–6043 (2013). doi: 10.1016/j.watres.2013.07.019 CrossRefGoogle Scholar
  33. 33.
    Fonoll, X., Dosta, J., Mata-Alvaréz, J.: Anaerobic co-digestion of sewage sludges and fruit wastes: evaluation of the transitory states when the co-substrate is changed. Chem. Eng. J. 262, 1268–1274 (2015). doi: 10.1016/j.cej.2014.10.045 CrossRefGoogle Scholar
  34. 34.
    Martín, M.A., Fernandéz, R., Serrano, A., Siles, J.A.: Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Manag. 33, 1633–1639 (2013). doi: 10.1016/j.wasman.2013.03.027 CrossRefGoogle Scholar
  35. 35.
    Serrano, A., Lopez, J.A.S., Martín, M.A., El Bari, H.: Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environ. Technol. 35(7), 898–906 (2014). doi: 10.1080/09593330.2013.855822 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • A. Carvalho
    • 1
    Email author
  • R. Fragoso
    • 1
  • J. Gominho
    • 2
  • E. Duarte
    • 1
  1. 1.Linking Landscape, Environment, Agriculture and Food (LEAF), School of AgricultureUniversity of LisbonLisbonPortugal
  2. 2.Forest Research Centre, School of AgricultureUniversity of LisbonLisbonPortugal

Personalised recommendations