Waste and Biomass Valorization

, Volume 10, Issue 1, pp 63–74 | Cite as

Co-composting of Green Waste Mixed with Unprocessed and Processed Food Waste: Influence on the Composting Process and Product Quality

  • E. R. Oviedo-Ocaña
  • I. Dominguez
  • D. KomilisEmail author
  • A. Sánchez
Original Paper


Green waste (GW) represents a large fraction of municipal solid waste (MSW) and has increased significantly with the rapid development of urban green areas in some countries. Composting is an appropriate method for the treatment and recovery of these wastes. However, the high content of lignocellulosic substances in GW is known to slow down the decomposition process. This research evaluated the effect of introducing processed food waste (PFW) and unprocessed food waste (UPFW) on composting of GW, it monitored the process itself and assessed the end-product quality. A field-scale experiment was developed using three treatments: Treatment A (100%GW), Treatment B (40%UPFW + 60%GW) and Treatment C (50%GW + 30%UPFW + 20%PFW). Treatment C reached thermophilic temperatures in a shorter time than the other treatments and maintained those temperatures for longer periods. In addition, treatment C reached ambient temperatures during curing in a shorter time compared to treatments A and B. An improved product quality was observed in treatment C compared to other treatments. For example, products from treatment C had lower ash content, higher concentrations of TOC and PTotal and lower EC values compared to treatments A and B. The final fertility index of the end-product from treatment C was 4.8–5.0, which indicates that the product can be suitable for agricultural use.


Biowaste Composting Green waste Fertility index Food waste 



The authors thank Universidad Industrial de Santander for funding the research projects identified CI 1371 of 2014 and CI 2354 of 2017.


  1. 1.
    EPA—Environmental Protection Agency. Advancing Sustainable Materials Management: 2013 Fact Sheet. (2015). Accessed 10 May 2017
  2. 2.
    Kumar, M., Ou, Y., Lin, J.: Co-composting of green and food waste at low C/N ratio. Waste Manag. 30, 602–609 (2010)CrossRefGoogle Scholar
  3. 3.
    Zhang, L., Sun, X.: Effects of earthworm casts and zeolite on the two-stage composting of green waste. Waste Manag. 39, 119–129 (2015)CrossRefGoogle Scholar
  4. 4.
    Haynes, R.J., Belyaeva, O.N., Zhou, Y.F.: Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Manag. 35, 48–54 (2015)CrossRefGoogle Scholar
  5. 5.
    Zhang, L., Sun, X.: Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Bioresour. Technol. 163, 112–122 (2014)CrossRefGoogle Scholar
  6. 6.
    Lopez, M., Soliva, M., Martínez-Farré, F.X., Bonmatí, A., Huerta-Pujol, O.: An assessment of the characteristics of yard trimmings and recirculated yard trimmings used in biowaste composting. Bioresour. Technol. 101, 1399–1405 (2010)CrossRefGoogle Scholar
  7. 7.
    Levis, J., Barlaz, M., Themelis, N., Ulloa, P.: Assessment of the state of food waste treatment in the United States and Canada. Waste Manag. 30, 1486–1494 (2010)CrossRefGoogle Scholar
  8. 8.
    Benito, M., Masaguer, A., Moliner, A., De Antonio, R.: Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour. Technol. 97(16), 2071–2076 (2006)CrossRefGoogle Scholar
  9. 9.
    Cáceres, R., Coromina, N., Malińska, K., Marfà, O.: Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media. Bioresour. Technol. 179, 398–406 (2015)CrossRefGoogle Scholar
  10. 10.
    Morales, A.B., Bustamante, M.A., Marhuenda-Egea, F.C., Moral, R., Ros, M., Pascual, J.A.: Agri-food sludge management using different co-composting strategies: study of the added value of the composts obtained. J. Clean Prod. 121, 186–197 (2016)CrossRefGoogle Scholar
  11. 11.
    Jurado, M.M., Suárez-Estrella, F., López, M.J., Vargas-García, M.C., López-González, J.A., Moreno, J.: Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour. Technol. 186, 15–24 (2015)CrossRefGoogle Scholar
  12. 12.
    Insam, H., de Bertoldi, M. Microbiology of the composting process. Compost science and technology. In: Diaz, L.F., de Bertoldi M., Bidlingmaier, W., Stentiford, E. (eds.) Waste Manage, vol. 8, pp. 25–45 (2007)Google Scholar
  13. 13.
    Zhang, L., Sun, X.: Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 48, 115–126 (2016)CrossRefGoogle Scholar
  14. 14.
    Pandey, P.K., Cao, W., Biswas, S., Vaddella, V.: A new closed loop heating system for composting of green and food wastes. J. Clean Prod. 133, 1252–1259 (2016)CrossRefGoogle Scholar
  15. 15.
    Dzulkurnain, Z., Hassan, M.A., Zakaria, M.R., Wahab, P.E.M., Hasan, M.Y., Shirai, Y.: Co-composting of municipal sewage sludge and landscaping waste: a pilot scale study. Waste Biomass Valor. 8, 1–11 (2017)CrossRefGoogle Scholar
  16. 16.
    Moretti, S.M.L., Bertoncini, E.I., Abreu-Junior, C.H.: Composting sewage sludge with green waste from tree pruning. Sci. Agricola. 72, 432–439 (2015)CrossRefGoogle Scholar
  17. 17.
    Pandey, P.K., Vaddella, V., Cao, W., Biswas, S., Chiu, C., Hunter, S.: In-vessel composting system for converting food and green wastes into pathogen free soil amendment for sustainable agriculture. J. Clean Prod. 139, 407–415 (2016)CrossRefGoogle Scholar
  18. 18.
    Sakurai, K.: Método sencillo del análisis de residuos sólidos, HDT 17. CEPIS. (2001). Accessed 23 October 2016
  19. 19.
    ICONTEC. Norma Técnica Colombiana. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo. Instituto Colombiano de Normas Técnicas y Certificación. Bogotá (2003)Google Scholar
  20. 20.
    ICONTEC. Norma Técnica Colombiana NTC 370. Abonos o Fertilizantes. Determinación de Nitrógeno Total. Instituto Colombiano de Normas Técnicas y Certificación, Bogotá (1997)Google Scholar
  21. 21.
    Sullivan, D.M., Miller, R.O.: Compost quality attributes, measurements, and variability. In: Stoffella, P.J., Kahn, B.A. (eds.) Compost Utilization in Horticultural Cropping Systems, pp. 95–120. Lewis Publishers, Boca Raton (2001)Google Scholar
  22. 22.
    Dulac, N.: The Organic Waste flow in Integrated Sustainable Waste Management.—The Concept. Waste. Tools for Decision-makers: Experiences from the Urban Waste Expertise Programme (1995–2001). Netherlands, p. 49 (2001)Google Scholar
  23. 23.
    Saha, J.K., Panwar, N., Singh, M.V.: An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag. 30, 192–201 (2010)CrossRefGoogle Scholar
  24. 24.
    Eggerth, L.L., Diaz, L.F., Chang, M.T.F., Iseppi, L.: Marketing of composts. Waste Manag. Ser. 8, 325–355 (2007)CrossRefGoogle Scholar
  25. 25.
    Krogmann, U., Körner, I., Diaz, L.F., Composting: technology. In: Solid Waste Technology Management, pp. 533–568. Wiley, Chichester (2010)CrossRefGoogle Scholar
  26. 26.
    Jolanun, B., Towprayoon, S., Chiemchaisri, C.: Aeration improvement in fed batch composting of vegetable and fruit wastes. Environ. Prog. 27, 250–256 (2008)CrossRefGoogle Scholar
  27. 27.
    Hernandez, L., Gaitan, C.: Evaluación de la calidad fisicoquímica de los residuos orgánicos de rápida degradación generados en el campus universitario como potencial materia prima del proceso de compostaje. Proyecto de Grado. Escuela de Ingeniería Civil. Universidad Industrial de Santander (2014)Google Scholar
  28. 28.
    Bary, A.I., Cogger, C.G., Sullivan, D.M., Myhre, E.A.: Characterization of fresh yard trimmings for agricultural use. Bioresour. Technol. 96, 1499–1504 (2005)CrossRefGoogle Scholar
  29. 29.
    Oviedo-Ocaña, E.R., Torres-Lozada, P., Marmolejo-Rebellon, L.F., Torres-López, W.A., Dominguez, I., Komilis, D.: & Sánchez, A.: A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: a case study in Colombia. Waste Manag. 62, 24–32 (2017)CrossRefGoogle Scholar
  30. 30.
    Beck-Friis, B., Smårs, S., Jönsson, H., Eklind, Y., Kirchmann, H.: Composting of source-separated household organics at different oxygen levels: gaining an understanding of the emission dynamics. Compost. Sci. Util. 11(1), 41–50 (2003)CrossRefGoogle Scholar
  31. 31.
    Chiumenti, A., Chiumenti, R., Diaz, L., Savage, G., Eggerth, L., Goldstein, N.: Modern composting technologies, p. 96. The JG Press. Inc., Singapore (2005)Google Scholar
  32. 32.
    Adhikari, B., Barrington, S., Martinez, J., King, S.: Characterization of food waste and bulking agents for composting. Waste Manag. 28, 795–804 (2008)CrossRefGoogle Scholar
  33. 33.
    Stentiford, E., de Bertoldi, M.: Composting process. In: Christensen, T. (ed.) Solid Waste Technology Management, vol. 1–2. Blackwell, Oxford (2010)Google Scholar
  34. 34.
    Diaz, L.F., Savage, G.M., Eggerth, L.L., Chiumenti, A. Systems used in composting. Compost Science and Technology. In: Diaz L.F., de Bertoldi, M., Bidlingmaier, W., Stentiford, E., Waste Management Series, vol. 8, 1–364 (2007)Google Scholar
  35. 35.
    Francou, C., Linéres, M., Derenne, S., Villio-Poitrenaud, M., Houot, S.: Influence of green waste, biowaste and paper–cardboard initial ratios on organic matter transformations during composting. Bioresour. Technol. 99, 8926–8934 (2008)CrossRefGoogle Scholar
  36. 36.
    Böhm, R.: Pathogenic agents. Waste Manag. Ser. 8, 177–200 (2007)CrossRefGoogle Scholar
  37. 37.
    Haug, R.T.: The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton (1993)Google Scholar
  38. 38.
    Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M.: Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 72, 169–183 (2000)CrossRefGoogle Scholar
  39. 39.
    Getahun, T., Nigusie, A., Entele, T., Gerven, T., Van der Bruggen, B.: Effect of turning frequencies on composting biodegradable municipal solid waste quality. Resour. Conserv. Recyl. 65, 79–84 (2012)CrossRefGoogle Scholar
  40. 40.
    Nolan, T., Troy, S.M., Healy, M.G., Kwapinski, W., Leahy, J.J., Lawlor, P.G.: Characterization of compost produced from separated pig manure and a variety of bulking agents at low initial C/N ratios. Bioresour. Technol. 102, 7131–7138 (2011)CrossRefGoogle Scholar
  41. 41.
    Boldrin, A., Andersen, J.K., Christensen, T.H.: LCA Report: Environmental Assessment of Garden Waste Management in Arhus Kommune. Department of Environmental Engineering, Technical University of Denmark, Copenhagen (2009)Google Scholar
  42. 42.
    Boldrin, A., Christensen, T.H., Körner, I., Krogmann, U.: Composting: mass balances and product quality. In: Christensen, T. H. (ed.) Solid Waste Technology & Management, vol 1, 2. Wiley, Chichester (2011). doi: 10.1002/9780470666883.ch36 Google Scholar
  43. 43.
    Wei, Y., Zhao, Y., Xi, B., Wei, Z., Li, X., Cao, Z.: Changes in phosphorus fractions during organic wastes composting from different sources. Bioresour. Technol. 189, 349–356 (2015)CrossRefGoogle Scholar
  44. 44.
    Jiang, J., Liu, X., Huang, Y., Huang, H.: Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste Manag. 39, 78–85 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • E. R. Oviedo-Ocaña
    • 1
  • I. Dominguez
    • 1
  • D. Komilis
    • 2
    • 3
    Email author
  • A. Sánchez
    • 2
  1. 1.Escuela de Ingeniería Civil, Facultad de Ingeniería Fisico-mecánicaUniversidad Industrial de SantanderBucaramangaColombia
  2. 2.Composting Research Group, Department of Chemical EngineeringUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Department of Environmental EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations