Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 1, pp 53–61 | Cite as

Production of Cellulase by Bacillus amyloliquefaciens-ASK11 Under High Chromium Stress

  • Sumaira Aslam
  • Ali HussainEmail author
  • Javed Iqbal Qazi
Original Paper

Abstract

Chronic exposure of soil to metal pollutants makes it imperative to study agro-ecological responses of nutrient-recycling microbiota of the soil under metal stress conditions. In this connection, we conducted a study to check the production of cellulase by a chromium-resistant and cellulose-degrading bacterial strain isolated from a leather-tanning industrial waste-contaminated area. The isolate was identified as Bacillus amyloliquefaciens-ASK11 through 16S rDNA sequencing. The supplementation of galactose and peptone as carbon and nitrogen sources, respectively enhanced the production of cellulase significantly. The bacterium yielded the production of cellulase to 20.23 U mL−1 in optimized media with 10 ppm of Cr(VI). The increments in cellulolytic activity were achieved by cultivating 10% inocula of B. amyloliquefaciens-ASK11 at pH 7 (28 °C) with aeration at 120 rpm for 96 h. Inhibitory relation between increasing chromium concentrations and the cellulolytic activity could permit the bacterium to express 1.33 U mL−1 of cellulase at 500 ppm of Cr(VI). The findings of this study suggested that chromium-resistant cellulolytic bacteria could be exploited for the rehabilitation and bioremediation of chromium-ruined agro-industrial soils with concomitant gearing of carbon cycle.

Keywords

Bacillus amyloliquefaciens Carbon cycle Cellulase Cellulolytic bacteria Chromium stress Toxic metals 

Abbreviations

C

Carbon

C-ase

Cellulase

Cr

Chromium

N

Nitrogen

O.D.

Optical density

Notes

Acknowledgements

Financial support of Higher Education Commission, Pakistan for funding the first author under the ‘‘Indigenous Ph.D. 5000 Fellowship Programme’’ is highly acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflicts of interest.

References

  1. 1.
    Ackerley, D.F., Gonzalez, C.F., Keyhan, M., Blake, R., Matin, A.: Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol. 6, 851–860 (2004)CrossRefGoogle Scholar
  2. 2.
    Arias, M.E., González-Pérez, J.A., Gonzalez-Vila, F.J., Ball, A.S.: Soil health: a new challenge for microbiologists and chemists. Int. Microbiol. 8, 13–21 (2005)Google Scholar
  3. 3.
    Aslam, S., Qazi, J.I., Hussain, A., Ali, S.: Vertical zonation and seed germination indices of chromium resistant cellulolytic and nitrogen fixing bacteria from a chronically metal exposed land area. Pak. J. Bot. 46, 2257–2268 (2014)Google Scholar
  4. 4.
    Bai, S., Kumar, M.R., Kumar, DJM, Balashanmugam, P., Kumaran, MDB, Kalaichelvan, P.T.: Cellulase production by Bacillus subtilis isolated from cow dung. Arch. Appl. Sci Res. 4, 269–279 (2012)Google Scholar
  5. 5.
    Berner, A., Hildermann, I., Fliessbach, A., Pfiffner, L., Niggli, U., Mäder, P.: Crop yield and soil fertility response to reduced tillage under organic management. Soil Till. Res. 101, 89–96 (2008)CrossRefGoogle Scholar
  6. 6.
    Chew, I., Obbard, J.P., Stanforth, R.R.: Microbial cellulose decomposition in soils from a rifle range contaminated with heavy metals. Environ. Pollut. 111, 367–375 (2001)CrossRefGoogle Scholar
  7. 7.
    Choppala, G., Bolan, N., Kunhikrishnan, A., Skinner, W., Seshadri, B.: Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environ. Sci. Pollut. Res. 22, 8969–8978 (2015)CrossRefGoogle Scholar
  8. 8.
    Cornfield, A.H.: Effects of addition of 12 metals on carbon dioxide release during incubation of an acid sandy soil. Geoderma 19, 199–203 (1977)CrossRefGoogle Scholar
  9. 9.
    Corstanje, R., Reddy, K.R., Prenger, J.P., Newman, S., Ogram, A.V.: Soil microbial eco-physiological response to nutrient enrichment in a sub-tropical wetland. Ecol. Indic. 7, 277–289 (2007)CrossRefGoogle Scholar
  10. 10.
    Dhal, B., Thatoi, H., Das, N., Pandey, B.D.: Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J. Chem. Technol. Biotechnol. 85, 1471–1479 (2010)Google Scholar
  11. 11.
    Doelman, P., Haanstra, L.: Effect of lead on soil respiration and dehydrogenase activity. Soil. Biol. Biochem. 11, 475–479 (1979)CrossRefGoogle Scholar
  12. 12.
    Ellaiah, P., Srinivasulu, B., Adinarayana, K.: A review on microbial alkaline proteases. J. Sci. Ind. Res. 61, 690–704 (2002)Google Scholar
  13. 13.
    Hartel, A., Helger, R., Lang, H.: A method for determination of glucose. Z. Klin. Chem. Klin. Biochem. 7, 183 (1969)Google Scholar
  14. 14.
    Heck, J.X., Hertz, P.F., Ayub, A.Z.: Cellulase and xylanase production by isolated Amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Braz. J. Microbiol. 33, 213–218 (2002)CrossRefGoogle Scholar
  15. 15.
    Jansová, E., Schwarzová, Z., Chaloupka, J.: Sporulation and synthesis of extracellular proteinases in Bacillus subtilis are more temperature-sensitive than growth. Folia Microbiol. 38, 22–24 (1993)CrossRefGoogle Scholar
  16. 16.
    Kasana, R.C., Salwan, R., Dhar, H., Dutt, S., Gulati, A.: A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57, 503–507 (2008)CrossRefGoogle Scholar
  17. 17.
    Krishna, K.R., Philip, L.: Bioremediation of Cr(VI) in contaminated soils. J. Hazard. Mater. 121, 109–117 (2005)CrossRefGoogle Scholar
  18. 18.
    Li, H., Medina, F., Vinson, S.B., Coates, C.J.: Isolation, characterization and molecular identification of bacteria from the red imported fire ant (Solenopsis invicta) midgut. J. Invertebr. Pathol. 89, 203–209 (2005)CrossRefGoogle Scholar
  19. 19.
    Lin, L., Kan, X., Yan, H., Wang, D.: Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electron. J. Biotechnol. 15, 1–7 (2012)CrossRefGoogle Scholar
  20. 20.
    Liu, J., Zhang, Y.Q., Zhang, L.M., Zhou, X.B., Shi, X.J.: Impact of Cr3 + pollution on microbial characteristics in purple paddy soil. Pak. J. Pharm. Sci. 1, 625–631 (2014)Google Scholar
  21. 21.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  22. 22.
    Makoi, J.H., Ndakidemi, P.A.: Selected soil enzymes: examples of their potential roles in the ecosystem. Afr. J. Biotechnol. 7, 181–191 (2008)Google Scholar
  23. 23.
    Megharag, M., Avudainayagam, S., Naidu, R.: Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 47, 51–54 (2003)CrossRefGoogle Scholar
  24. 24.
    Nandimath, A.P., Kharat, K.R., Gupta, S.G., Kharat, A.S.: Optimization of cellulase production for Bacillus sp. and Pseudomonas sp. soil isolates. Afr. J. Microbiol Res. 10, 410–419 (2016)CrossRefGoogle Scholar
  25. 25.
    Nkohla, A., Okaiyeto, K., Olaniran, A., Nwodo, U., Mabinya, L., Okoh, A.: Optimization of growth parameters for cellulase and xylanase production by Bacillus species isolated from decaying biomass. J. Biotech. Res. 8, 33–47 (2017)Google Scholar
  26. 26.
    Ogbonna, J.C., Liu, Y.C., Liu, Y.K., Tanaka, H.: Loofa (Luffa cylindrica) sponge as a carrier for microbial cell immobilization. J. Ferment. Bioeng. 78, 437–442 (1994)CrossRefGoogle Scholar
  27. 27.
    Pandey, A.: Solid-state fermentation. Biochem. Eng. J. 13, 81–84 (2003)CrossRefGoogle Scholar
  28. 28.
    Patki, S.U., Prince William, SPM, Bodkhe, S.Y., Vaidya, A.N.: Toxic effect of hexavalent chromium on composting of segregated organic waste. Bioscan 3, 651–658 (2010)Google Scholar
  29. 29.
    Peralta-Videa, J.R., Lopez, M.L., Narayan, M., Saupe, G., Gardea-Torresdey, J.: The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int. J. Biochem. Cell Biol. 41, 1665–1677 (2009)CrossRefGoogle Scholar
  30. 30.
    Rehman, A., Zahoor, A., Muneer, B., Hasnain, S.: Chromium tolerance and reduction potential of a Bacillus sp. ev3 isolated from metal contaminated wastewater. Bull. Environ. Contam. Toxicol. 81, 25–29 (2008)CrossRefGoogle Scholar
  31. 31.
    Robson, L.M., Chambliss, G.H.: (1984) Characterization of the cellulolytic activity of a Bacillus isolate. Appl Environ Microbiol 47, 1039–1046Google Scholar
  32. 32.
    Saviozzi, A., Levi-Minzi, R., Cardelli, R., Riffaldi, R.: A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil. 233, 251–259 (2001)CrossRefGoogle Scholar
  33. 33.
    Schwarz, W.: The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634–649 (2001)CrossRefGoogle Scholar
  34. 34.
    Shankar, T., Isaiarasu, L.: Cellulase production by Bacillus pumilus EWBCM1 under varying cultural conditions. Middle-East J. Sci. Res. 8, 40–45 (2011)Google Scholar
  35. 35.
    Subramanian, S., Sam, S., Jayaraman, G.: Hexavalent chromium reduction by metal resistant and halotolerant Planococcus maritimus VITP21. Afr. J. Microbiol. Res. 6, 7339–7349 (2012)CrossRefGoogle Scholar
  36. 36.
    Tariq, S.R., Shah, M.H., Shaheen, N., Jaffar, M., Khalique, A.: Statistical source identification of metals in groundwater exposed to industrial contamination. Environ. Monit. Assess. 138, 159–165 (2008)CrossRefGoogle Scholar
  37. 37.
    Tejirian, A., Xu, F.: Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl. Environ. Microbiol. 76, 7673–7682 (2010)CrossRefGoogle Scholar
  38. 38.
    Thavamani, P., Malik, S., Beer, M., Megharaj, M., Naidu, R.: Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. J. Environ. Manag. 99, 10–17 (2012)CrossRefGoogle Scholar
  39. 39.
    Viti, C., Decorosi, F., Tatti, E., Giovannetti, L.: Characterization of chromate-resistant and -reducing bacteria by traditional means and by a high-throughput phenomic technique for bioremediation purposes. Biotechnol. Prog. 23, 553–559 (2007)CrossRefGoogle Scholar
  40. 40.
    Xu, F., Ding, H., Tejirian, A.: Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme. Microb. Technol. 45, 203–209 (2009)CrossRefGoogle Scholar
  41. 41.
    Yang, J.P., Lu, F., Luo, J.M., Chen, J.: RFLP analysis of soil microbial diversity chromium contaminated soil remediation process. Appl. Mech. Mater. 716, 1039–1042 (2015)Google Scholar
  42. 42.
    Yang, V.W., Zhuang, Z., Elegir, G., Jeffries, T.W.: Alkaline-active xylanase produced by an alkaliphilic Bacillus sp isolated from kraft pulp. J. Ind. Microbiol. 15, 434–441 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of ZoologyGovernment College Women UniversityFaisalabadPakistan
  2. 2.Department of Wildlife & EcologyUniversity of Veterinary & Animal SciencesLahorePakistan
  3. 3.Department of ZoologyUniversity of the PunjabLahorePakistan

Personalised recommendations