Waste and Biomass Valorization

, Volume 10, Issue 1, pp 205–214 | Cite as

Use of Agro-Industrial Waste in the Removal of Phenanthrene and Pyrene by Microbial Consortia in Soil

  • Thiago Gonçalves Cavalcanti
  • Amanda Freire de Souza
  • Gilanna Falcão Ferreira
  • Diogo Simas Bernardes Dias
  • Liv Soares Severino
  • João Paulo Saraiva Morais
  • Kally Alves de Sousa
  • Ulrich VasconcelosEmail author
Original Paper


The addition of co-substrates as adjuvants to the bioremediation process enables almost complete removal of the polycyclic aromatic hydrocarbons (PAH) in the soil. The aim of this work was to associate biostimulation and bioaugmentation, represented respectively by the addition of residues from the processing of three oilseeds, and by the addition of consortia formed by Pseudomonas aeruginosa and Burkholderia cepacia strains, in the removal of phenanthrene and pyrene from a soil contaminated by a lubricating oil mixture containing approximately 50 mg/kg PAH. Three consortia were prepared from antimicrobial activity tests and each was stimulated with cotton, peanut or sesame cakes (20 and 40 mg/kg). The biodegradation tests were carried out on polyethylene reactors filled with 200 g of sandy soil. After 60 days incubation at room temperature, between 65 and 80% of the phenanthrene and pyrene was removed with preferential degradation of the three consortia by pyrene. In all cases, the most successful condition was obtained when the cake contents were added, independent of amount of contaminant content (40 or 80 mL/kg), emphasizing the importance of the use of co-substrate and reuse of agro-industrial wastes in bioremediation. Phytotoxicity assays demonstrated that Zea mays was the best indicator of soil fertility after treatment.


Bioremediation Bioaugmentation Biostimulation Biodegradation Polycyclic aromatic hydrocarbons Co-substrate 



The authors gratefully acknowledge the financial support of the CNPq (No. 477305/2013-0). The English text of this paper has been revised by Sidney Pratt, Canadian, MAT (The Johns Hopkins University), RSAdip—TESL (Cambridge University).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lazar, I., Dobrota, S., Voicu, A., Stefanescu, M., Sandulescu, L., Petrisor, I.G.: Microbial degradation of waste hydrocarbons in oily sludge from some Romenian oil fields. J. Pet. Sci. Eng. 22, 151–160 (1999)CrossRefGoogle Scholar
  2. 2.
    Lee, S.-H., Oh, B.I., Kim, J.G.: Effect of various amendments on heavy metal oil bioremediation and soil microbial activity. Bioresour. Technol. 99, 2578–2587 (2008)CrossRefGoogle Scholar
  3. 3.
    Wilcke, W.: Global patterns of polycyclic aromatic hydrocarbons (PAH) in soil. Geoderma 141, 157–166 (2007)CrossRefGoogle Scholar
  4. 4.
    El Mahdi, A.M., Aziz, H.A.: Hydrocarbon biodegradation using agro-industrial wastes as co-substrates. In: Bhakta, J.N. (ed.) Handbook of research on inventive bioremediation techniques, pp. 155–185. IGI Global, Hershey (2017)CrossRefGoogle Scholar
  5. 5.
    Adelaja, O., Keshavarz, T., Kyazze, G.: Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell. Eng. Life Sci. 14, 218–228 (2014)CrossRefGoogle Scholar
  6. 6.
    Vasconcelos, U., De França, F.P., Oliveira, F.J.S.: Removal of high-molecular weight polycyclic aromatic hydrocarbons. Quim. Nova 34, 218–221 (2011)CrossRefGoogle Scholar
  7. 7.
    Chaîneau, C.H., Rougeux, G., Yéprémian, C., Oudot, J.: Effect of nutrient concentration on the biodegradation of crude oil and associated microbial populations in soil. Soil Biol. Biochem. 37, 1490–1497 (2005)CrossRefGoogle Scholar
  8. 8.
    Hamdi, H., Benzarti, S., Manusadžianas, L., Aoyama, I., Jedidi, N.: Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol. Biochem. 39, 1926–1935 (2007)CrossRefGoogle Scholar
  9. 9.
    Nikolopoulou, M., Kalogerakis, N.: Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Mar. Pollut. Bull. 56, 1855–1861 (2008)CrossRefGoogle Scholar
  10. 10.
    Bacosa, H., Suto, K., Inoue, C.: Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeterior. Biodegrad. 64, 702–710 (2010)CrossRefGoogle Scholar
  11. 11.
    Bacosa, H.P., Suto, K., Inoue, C.: Degradation potential and microbial community structure of hreavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan. J. Environ. Sci. Health A 48, 835–846 (2013)CrossRefGoogle Scholar
  12. 12.
    Savich, V., Novik, G.: Waste biodegradation and utilization by Pseudomonas species. J. Microbiol. Biotechnol. Food Sci. 6, 851–857 (2016)CrossRefGoogle Scholar
  13. 13.
    Wu, M., Chen, L., Tian, Y., Ding, Y., Dick, W.A.: Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ. Pollut. 178, 152–158 (2013)CrossRefGoogle Scholar
  14. 14.
    Mittal, A., Singh, P.: Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Ind. J. Exp. Biol. 47, 760–765 (2009)Google Scholar
  15. 15.
    Somtrakoon, K., Suanjit, S., Pokethitiyook, P., Kruatrachue, M., Lee, H., Upatham, S.: Phenanthrene stimulates the degration of pyrene and fluoranthene by Bukholderia sp. VUN10013. World J. Microbiol. Biotechnol. 24, 523–531 (2008)CrossRefGoogle Scholar
  16. 16.
    Dean-Ross, D., Moody, J., Cerniglia, C.E.: Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated soils. FEMS Microbiol. Ecol. 41, 1–7 (2002)CrossRefGoogle Scholar
  17. 17.
    Thenmozhi, R., Praveenkumar, D., Priya, E., Nagasathy, A., Thajuddin, N.: Evaluation of aromatic and polycyclic hydrocarbon degrading abilities of selected bacterial isolates. J. Microbiol. Biotechnol. Res. 2, 445–449 (2012)Google Scholar
  18. 18.
    Balashova, N.V., Kosheleva, I.A., Golovchenko, P., Boronin, A.M.: Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem. 35, 291–296 (1999)CrossRefGoogle Scholar
  19. 19.
    Nascimento, T.C.F., Oliveira, F.J.S., França, F.P.: Biorremediación de um suelo tropical contaminado com resíduos aceitosos intemperizados. Rev. Int. Contam. Ambie. 29, 21–28 (2013)Google Scholar
  20. 20.
    Agamuthu, P., Tan, Y.S., Fauziah, S.H.: Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environ. Sci. 18, 694–702 (2013)CrossRefGoogle Scholar
  21. 21.
    Molina-Barahona, L., Rodríguez-Vásquez, R., Hernández-Valasco, M., Veja-Jarquín, C., Zapata-Pérez, O., Mendonza-Cantú, A., Albores, A.: Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Appl. Soil Ecol. 27, 165–175 (2004)CrossRefGoogle Scholar
  22. 22.
    Shahsavari, E., Adetutu, E.M., Anderson, P.A., Ball, A.S.: Plant residues—a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil. Sci. Total Environ. 443, 766–774 (2013)CrossRefGoogle Scholar
  23. 23.
    Xue, X., Landis, A. E.: Eutrophication potential of food consumption patterns. Environ. Sci. Technol. 44, 6450–6456 (2010)CrossRefGoogle Scholar
  24. 24.
    USEPA. Method 351.2 (1993)Google Scholar
  25. 25.
    USEPA. Method 8015B (1996)Google Scholar
  26. 26.
    USEPA. Method 8270 C (1996)Google Scholar
  27. 27.
    Coraza, M.L., Rodrigues, D.G., Nozaki, J.: Preparation and characterization of orange wine. Quim. Nova 24, 449–452 (2001)Google Scholar
  28. 28.
    Alcântara, P.B., Jucá, J.F.T.: Settlement in landfills: influence of the composition of the municipal solid wastes, of the climate and of biodegradation. Geotecnia 118, 15–42 (2010)Google Scholar
  29. 29.
    APHA, AWWA, WEF: Standard methods for the examination of water and wastewater. APHA, AWWA, WEF, Baltimore (2012)Google Scholar
  30. 30.
    França, F.P., Muteca, F.F.L., Oliveira, F.J.S.: Biorremediation of fluvial sediment contaminated by Angolan crude oil. Braz. J. Petrol. Gas 8, 139–149 (2014)CrossRefGoogle Scholar
  31. 31.
    Vasconcelos, U., Lima, M.A.G.A., Calazans, G.M.T.: Pseudomonas aeruginosa associated with negative interactions on coliform bacteria growth. Can. J. Pure Appl. Sci. 4, 1133–1139 (2010)Google Scholar
  32. 32.
    Haghshenas, B., Nami, Y., Abdullah, N., Radiah, D.; Rosli, R.; Khosroushahi, A.Y.: Anticancer impacts of potentially probiotic acetic acid bacteria isolated from traditional dairy microbiota. LAW-Food Sci. Technol. 60, 690–697 (2015)Google Scholar
  33. 33.
    Palittapongarnpim, M., Pokethitiyook, P., Upatham, E.S., Tangbanluekal, L.: Biodegradation of crude oil by soil microorganisms in the tropic. Biodegradation 9, 83–90 (1998)CrossRefGoogle Scholar
  34. 34.
    USEPA. Method 3540 C: (1996)Google Scholar
  35. 35.
    Genhartdt, P., Murray, R.G.E., Wood, W.A., Kieg, N.R.: Methods for general and molecular bacteriology. ASM, Washington (1994)Google Scholar
  36. 36.
    Severino, L.S., Costa, F.X., Beltrão, N.E.B., Lucena, M.A.: Mineralização da torta de mamona, esterco bovino e bagaço de cana estimada pela respiração microbiana. Rev. Biol. Ciên. Terra 5, 1–6 (2004)Google Scholar
  37. 37.
    Cavalcanti, T.G., Viana, A.A.G., Guedes, T.P.G., Freire, A.S., Travassos, R.A., Vasconcelos, U.: Seed options for toxicity tests in soil contaminated with oil. Can. J. Pure Appl. Sci. 10, 4039–4045 (2016)Google Scholar
  38. 38.
    Anastasi, A., Coppola, T., Prigione, V., Varese, G.C.: Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J. Hazard. Mater. 165, 1229–1233 (2009)CrossRefGoogle Scholar
  39. 39.
    CONAMA. Resolução no. 420 (2009)Google Scholar
  40. 40.
    Sawulski, P., Boots, B., Clipson, N., Doyle, E.: Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Lett. Appl. Microbiol. 61, 199–207 (2015)CrossRefGoogle Scholar
  41. 41.
    Bojes, H.K., Pope, P.G.: Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at an exploration and production sites in Texas. Regul. Toxicol. Pharmacol. 47, 288–295 (2007)CrossRefGoogle Scholar
  42. 42.
    Bacososa, H.P., Inoue, C.: Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J. Hazard. Mater. 283, 689–697 (2015)CrossRefGoogle Scholar
  43. 43.
    Yuan, G.-L., Wu, L.-J., Sun, Y., Li, J., Li, J.-C., Wang, G.-H.: Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: distribution, sources, transport and contribution in global cycling. Environ. Pollut. 203, 137–144 (2015)CrossRefGoogle Scholar
  44. 44.
    Falciglia, P.P., Giustra, M.G., Vagliasindi, F.G.A: Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics. J. Hazard. Mater. 185, 392–400 (2011)CrossRefGoogle Scholar
  45. 45.
    Vasconcelos, U., Oliveira, F.J.S., França, F.P.: Raw glycerol as cosubstrate on the PHAs biodegradation in soil. Can. J. Pure Appl. Sci. 7, 2203–2209 (2013)Google Scholar
  46. 46.
    Bacosa, H.P., Suto, K., Inoue, C.: Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int. Biodeterior. Biodegrad. 74, 109–115 (2012)CrossRefGoogle Scholar
  47. 47.
    Niepceron, M., Martin-Laurent, F., Crampon, M., Portet-Koltalo, F., Akpa-Vinceslas, M., Legras, M., Bru, D., Bureau, F., Bodilis, J.: Gammaproteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environ. Pollut. 180, 199–205 (2013)CrossRefGoogle Scholar
  48. 48.
    Bacosa, H.P., Erdner, D., Liu, Z.: Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Mar. Pollut. Bull. 95, 265–272 (2015)CrossRefGoogle Scholar
  49. 49.
    Hwang, S., Cutright, T.J.: Effect of expandable clays and cometabolism on PAH biodegradation. Environ. Sci. Pollut. Res. 10, 277–280 (2003)CrossRefGoogle Scholar
  50. 50.
    Karamalidis, A.K., Evangelou, A.C., Karabika, E., Koukkou, A.I., Drainas, C., Voudrias, E.A.: Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresour. Technol. 11, 6545–6552 (2010)CrossRefGoogle Scholar
  51. 51.
    Mao, Y., Sun, M., Yang, X., Wei, H.: Remediation of organochlorine pesticides (OCPs) contaminated soil by successive hydroxypropyl-β-cyclodextrin and peanut oil enhanced soil washing–nutrient addition: a laboratory evaluation. J. Soil Sed. 13, 403–412 (2013)CrossRefGoogle Scholar
  52. 52.
    Miya, R.K., Firestone, M.K.: Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J. Environ. Qual. 30, 1911–1918 (2001)CrossRefGoogle Scholar
  53. 53.
    Sijim, D., Kraaij, R., Belfroid, A.: Bioavailability in soil or sediment: exposure of different organisms and approaches to study it. Environ. Pollut. 108, 113–119 (2000)CrossRefGoogle Scholar
  54. 54.
    Aspray, T., Gluszek, A., Carvalho, D.: Effect of nitrogen amendment on respiration and respiratory quotient (RQ) in three hydrocarbon contaminated soils of different type. Chemosphere 72, 947–951 (2008)CrossRefGoogle Scholar
  55. 55.
    Kumar, N.V., Murthy, P.S., Manjunatha, J.R., Bettadaiah, B.K.: Synthesis and Quorum Sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chem. 159, 451–457 (2014)CrossRefGoogle Scholar
  56. 56.
    Das, P., Ma, L.Z.: Pyocyanin pigment assisting biosurfactant-mediated hydrocarbon emulsification. Int. Biodegrad. Biodeterior. 85, 278–283 (2013)CrossRefGoogle Scholar
  57. 57.
    Rao, A.S., Rashmi, K.S., Nayanatara, A.K., Kiamat, A., Poojary, D., Pai, S.R.: Effect of antibacterial and antifungal activities of Sesamum indicum. World J. Pharm. Res. 2, 1676–1680 (2013)Google Scholar
  58. 58.
    Sebei, K., Gnouma, A., Herchi, W., Sakouhui, F., Boukhchina, S.: Lipds, proteins, phenolic composition, antioxidant and antibacterial activities of seeds of peanuts (Arachis hypogaea L.) cultivated in Tunisia. Biol. Res. 46, 257–263 (2013)CrossRefGoogle Scholar
  59. 59.
    Wang, X., Howell, C.P., Chen, F., Yian, J., Jiang, Y.: Gossypol – A polyhenolic compound from cotton plant. Adv. Food Nutr. Res. 58, 215–263 (2009)CrossRefGoogle Scholar
  60. 60.
    Baggi, G.: Ecological implications of synergistic and antagonistic interactions among growth and non growth analogs present in mixture. Ann. Microbiol. 50, 103–115 (2000)Google Scholar
  61. 61.
    Sabaté, J., Viñas, M., Solanas, A.M.: Laboratory-scale bioremediation experiments on hydrocarbon-contaminated soils. Int. Biodegrad. Biodeterior. 54, 19–25 (2004)CrossRefGoogle Scholar
  62. 62.
    Adam, G., Duncan, H.: Influence of diesel fuel on seed germination. Environ. Pollut. 120, 363–370 (2002)CrossRefGoogle Scholar
  63. 63.
    Cordazzo, C.V, Aracama, C.V.: Influência do dimorfismo de sementes de Senecio crassiflorus (Poir.) DC (Asteraceae) na germinação e crescimento das plântulas. Atlântica 20, 121–130 (1998)Google Scholar
  64. 64.
    Tiquia, S.M., Tam, N.F.Y., Hodgkiss, I.J.: Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 93, 249–256 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Thiago Gonçalves Cavalcanti
    • 1
  • Amanda Freire de Souza
    • 1
  • Gilanna Falcão Ferreira
    • 1
  • Diogo Simas Bernardes Dias
    • 2
  • Liv Soares Severino
    • 3
  • João Paulo Saraiva Morais
    • 3
  • Kally Alves de Sousa
    • 4
  • Ulrich Vasconcelos
    • 1
    Email author
  1. 1.Laboratório de Microbiologia Ambiental, Centro de BiotecnologiaUniversidade Federal da Paraíba, Campus IJoão PessoaBrazil
  2. 2.Laboratório de Biossíntese, Biocorrosão e Biodegradação, Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Embrapa-AlgodãoCampina GrandeBrazil
  4. 4.Instituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations