Hydrolysis of Orange Peel with Cellulase and Pectinase to Produce Bacterial Cellulose using Gluconacetobacter xylinus
- 232 Downloads
- 1 Citations
Abstract
Oranges (Citrus sinensis) are the world’s most processed fruit. The waste from processing is rich in soluble sugars, cellulose, hemicelluloses and pectin and therefore has potential as feedstock for bacterial cellulose (BC) production. In this study, cellulase and pectinase were used to hydrolyze orange peel in order to increase the amount of fermentable sugars. Response surface methodology was used to evaluate the effects of reaction parameters, and 80.99 g/L reducing sugar was obtained with cellulase of 1589.41 U/g, pectinase of 31.75 U/g and a reaction time of 5.28 h. Besides, the orange peel fluid and orange peel hydrolysate were used as the culture media for Gluconacetobacter xylinus during BC production. The orange peel media have no significant inhibiting effect on the fermentation activity of G. xylinus for BC production. As an acetic acid buffer was used or nitrogen source was added to the orange peel media, BC production was 4.2–6.32 times higher than that in traditional Hestrin and Schramm (HS) medium. The SEM and IR spectra showed that the BC produced was not much different than that produced in HS medium. These results demonstrate that orange peel not only can be used as a low cost feedstock to produce BC, but it also provides a solution to the waste disposal problem of the orange juice industry.
Keywords
Orange peel waste Cellulase Pectinase Bacterial cellulose Gluconacetobacter xylinus Enzymatic hydrolysisNotes
Acknowledgements
This work was supported by research funding grants provided by the Ministry of Science and Technology of Taiwan (MOST 104-2218-E-022-001-MY2 and 104-2221-E-005-061-MY3).
References
- 1.FAO: Citrus fruit statistics. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Citrus/Documents/CITRUS_BULLETIN_2012.pdf (2012)
- 2.Mamma, D., Christakopoulos, P.: Biotransformation of citrus by-products into value added products. Waste Biomass Valoriz. 5(4), 529–549 (2014)CrossRefGoogle Scholar
- 3.Panuccio, M., Attinà, E., Basile, C., Mallamaci, C., Muscolo, A.: Use of recalcitrant agriculture wastes to produce biogas and feasible biofertilizer. Waste Biomass Valoriz. 7(2), 267–280 (2016)CrossRefGoogle Scholar
- 4.Wilkins, M.R., Widmer, W.W., Grohmann, K.: Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem. 42(12), 1614–1619 (2007)CrossRefGoogle Scholar
- 5.Aravantinos-Zafiris, G., Tzia, C., Oreopoulou, V., Thomopoulos, C.D.: Fermentation of orange processing wastes for citric acid production. J. Sci. Food Agric. 65(1), 117–120 (1994)CrossRefGoogle Scholar
- 6.Bibi, N., Ali, S., Tabassum, R.: Statistical optimization of pectinase biosynthesis from orange peel by Bacillus licheniformis using submerged fermentation. Waste Biomass Valoriz. 7(3), 467–481 (2016)CrossRefGoogle Scholar
- 7.Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1), 1–12 (2007)CrossRefGoogle Scholar
- 8.Kurniawan, H., Lai, J.T., Wang, M.J.: Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose 19(6), 1975–1988 (2012)CrossRefGoogle Scholar
- 9.Budhiono, A., Rosidi, B., Taher, H., Iguchi, M.: Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr. Polym. 40(2), 137–143 (1999)CrossRefGoogle Scholar
- 10.Kurosumi, A., Sasaki, C., Yamashita, Y., Nakamura, Y.: Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr. Polym. 76(2), 333–335 (2009)CrossRefGoogle Scholar
- 11.Hestrin, S., Schramm, M.: Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58(2), 345 (1954)CrossRefGoogle Scholar
- 12.Uraki, Y., Morito, M., Kishimoto, T., Sano, Y.: Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung 56(4), 341–347 (2002)CrossRefGoogle Scholar
- 13.Hong, F., Qiu, K.: An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr. Polym. 72(3), 545–549 (2008)CrossRefGoogle Scholar
- 14.Goelzer, F., Faria-Tischer, P., Vitorino, J., Sierakowski, M.R., Tischer, C.: Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater. Sci. Eng. C 29(2), 546–551 (2009)CrossRefGoogle Scholar
- 15.Wu, J.M., Liu, R.H.: Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J. Biosci. Bioeng. 115(3), 284–290 (2013)CrossRefGoogle Scholar
- 16.Grohmann, K., Cameron, R., Buslig, B.: Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour. Technol. 54(2), 129–141 (1995)CrossRefGoogle Scholar
- 17.Kuo, C.H., Lin, P.J., Wu, Y.Q., Ye, L.Y., Yang, D.J., Shieh, C.J., Lee, C.K.: Simultaneous saccharification and fermentation of waste textiles for ethanol production. BioResources 9(2), 2866–2875 (2014)CrossRefGoogle Scholar
- 18.Taherzadeh, M.J., Karimi, K.: Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3), 472–499 (2007)Google Scholar
- 19.Almeida, J.R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., Gorwa-Grauslund, M.F.: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82(4), 340–349 (2007)CrossRefGoogle Scholar
- 20.Pocan, P., Bahcegul, E., Oztop, M.H., Hamamci, H.: Enzymatic hydrolysis of fruit peels and other lignocellulosic biomass as a source of sugar. Waste Biomass Valoriz. (2017). doi: 10.1007/s12649-017-9875-3 Google Scholar
- 21.Taher, I.B., Bennour, H., Fickers, P., Hassouna, M.: Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillusniger ATCC 16404 and Trichodermareesei DSMZ 970. Waste Biomass Valoriz. 8(1), 183–192 (2017)CrossRefGoogle Scholar
- 22.Kashyap, D., Vohra, P., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77(3), 215–227 (2001)CrossRefGoogle Scholar
- 23.Li, P.J., Xia, J.L., Shan, Y., Nie, Z.Y., Su, D.L., Gao, Q.R., Zhang, C., Ma, Y.L.: Optimizing production of pectinase from orange peel by Penicillium oxalicum PJ02 using response surface methodology. Waste Biomass Valoriz. 6(1), 13–22 (2015)CrossRefGoogle Scholar
- 24.Kuo, C.H., Chen, J.H., Liou, B.K., Lee, C.K.: Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll. 53, 98–103 (2016)CrossRefGoogle Scholar
- 25.Kuo, C.H., Lin, P.J., Lee, C.K.: Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. J. Chem. Technol. Biotechnol. 85(10), 1346–1352 (2010)CrossRefGoogle Scholar
- 26.Dien, B.S., Ximenes, E.A., O’Bryan, P.J., Moniruzzaman, M., Li, X.L., Balan, V., Dale, B., Cotta, M.A.: Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresour. Technol. 99(12), 5216–5225 (2008)CrossRefGoogle Scholar
- 27.Zhang, M., Su, R., Qi, W., He, Z.: Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl. Biochem. Biotechnol. 160(5), 1407–1414 (2010)CrossRefGoogle Scholar
- 28.Zhang, J., Pakarinen, A., Viikari, L.: Synergy between cellulases and pectinases in the hydrolysis of hemp. Bioresour. Technol. 129, 302–307 (2013)CrossRefGoogle Scholar
- 29.Masaoka, S., Ohe, T., Sakota, N.: Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75(1), 18–22 (1993)CrossRefGoogle Scholar
- 30.Zhong, C., Zhang, G.C., Liu, M., Zheng, X.T., Han, P.P., Jia, S.R.: Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl. Microbiol. Biotechnol. 97(14), 6189–6199 (2013)CrossRefGoogle Scholar
- 31.Hsieh, J.T., Wang, M.J., Lai, J.T., Liu, H.S.: A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. Eng. 63, 46–51 (2016)CrossRefGoogle Scholar
- 32.Hernández-Carranza, P., Ávila-Sosa, R., Guerrero-Beltrán, J. A., Navarro-Cruz, A. R., Corona-Jiménez, E., Ochoa-Velasco, C. E.: Optimization of antioxidant compounds extraction from fruit by-products: apple pomace, orange and banana peel. J. Food Process. Preserv. 40(1), 103–115 (2016)CrossRefGoogle Scholar
- 33.Keshk, S. M.: Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr. Polym. 99, 98–100 (2014)CrossRefGoogle Scholar
- 34.Wu, J.M., Liu, R.H.: Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 90(1), 116–121 (2012)CrossRefGoogle Scholar
- 35.Shezad, O., Khan, S., Khan, T., Park, J.K.: Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr. Polym. 82(1), 173–180 (2010)CrossRefGoogle Scholar
- 36.Ul-Islam, M., Ha, J.H., Khan, T., Park, J.K.: Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr. Polym. 92(1), 360–366 (2013)CrossRefGoogle Scholar
- 37.Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H., Youk, J.H.: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340(15), 2376–2391 (2005)CrossRefGoogle Scholar