Waste and Biomass Valorization

, Volume 10, Issue 1, pp 85–93 | Cite as

Hydrolysis of Orange Peel with Cellulase and Pectinase to Produce Bacterial Cellulose using Gluconacetobacter xylinus

  • Chia-Hung KuoEmail author
  • Chun-Yung Huang
  • Chwen-Jen ShiehEmail author
  • Hui-Min David Wang
  • Chin-Yin Tseng
Original Paper


Oranges (Citrus sinensis) are the world’s most processed fruit. The waste from processing is rich in soluble sugars, cellulose, hemicelluloses and pectin and therefore has potential as feedstock for bacterial cellulose (BC) production. In this study, cellulase and pectinase were used to hydrolyze orange peel in order to increase the amount of fermentable sugars. Response surface methodology was used to evaluate the effects of reaction parameters, and 80.99 g/L reducing sugar was obtained with cellulase of 1589.41 U/g, pectinase of 31.75 U/g and a reaction time of 5.28 h. Besides, the orange peel fluid and orange peel hydrolysate were used as the culture media for Gluconacetobacter xylinus during BC production. The orange peel media have no significant inhibiting effect on the fermentation activity of G. xylinus for BC production. As an acetic acid buffer was used or nitrogen source was added to the orange peel media, BC production was 4.2–6.32 times higher than that in traditional Hestrin and Schramm (HS) medium. The SEM and IR spectra showed that the BC produced was not much different than that produced in HS medium. These results demonstrate that orange peel not only can be used as a low cost feedstock to produce BC, but it also provides a solution to the waste disposal problem of the orange juice industry.


Orange peel waste Cellulase Pectinase Bacterial cellulose Gluconacetobacter xylinus Enzymatic hydrolysis 



This work was supported by research funding grants provided by the Ministry of Science and Technology of Taiwan (MOST 104-2218-E-022-001-MY2 and 104-2221-E-005-061-MY3).


  1. 1.
  2. 2.
    Mamma, D., Christakopoulos, P.: Biotransformation of citrus by-products into value added products. Waste Biomass Valoriz. 5(4), 529–549 (2014)CrossRefGoogle Scholar
  3. 3.
    Panuccio, M., Attinà, E., Basile, C., Mallamaci, C., Muscolo, A.: Use of recalcitrant agriculture wastes to produce biogas and feasible biofertilizer. Waste Biomass Valoriz. 7(2), 267–280 (2016)CrossRefGoogle Scholar
  4. 4.
    Wilkins, M.R., Widmer, W.W., Grohmann, K.: Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem. 42(12), 1614–1619 (2007)CrossRefGoogle Scholar
  5. 5.
    Aravantinos-Zafiris, G., Tzia, C., Oreopoulou, V., Thomopoulos, C.D.: Fermentation of orange processing wastes for citric acid production. J. Sci. Food Agric. 65(1), 117–120 (1994)CrossRefGoogle Scholar
  6. 6.
    Bibi, N., Ali, S., Tabassum, R.: Statistical optimization of pectinase biosynthesis from orange peel by Bacillus licheniformis using submerged fermentation. Waste Biomass Valoriz. 7(3), 467–481 (2016)CrossRefGoogle Scholar
  7. 7.
    Czaja, W.K., Young, D.J., Kawecki, M., Brown, R.M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1), 1–12 (2007)CrossRefGoogle Scholar
  8. 8.
    Kurniawan, H., Lai, J.T., Wang, M.J.: Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose 19(6), 1975–1988 (2012)CrossRefGoogle Scholar
  9. 9.
    Budhiono, A., Rosidi, B., Taher, H., Iguchi, M.: Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr. Polym. 40(2), 137–143 (1999)CrossRefGoogle Scholar
  10. 10.
    Kurosumi, A., Sasaki, C., Yamashita, Y., Nakamura, Y.: Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr. Polym. 76(2), 333–335 (2009)CrossRefGoogle Scholar
  11. 11.
    Hestrin, S., Schramm, M.: Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58(2), 345 (1954)CrossRefGoogle Scholar
  12. 12.
    Uraki, Y., Morito, M., Kishimoto, T., Sano, Y.: Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung 56(4), 341–347 (2002)CrossRefGoogle Scholar
  13. 13.
    Hong, F., Qiu, K.: An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr. Polym. 72(3), 545–549 (2008)CrossRefGoogle Scholar
  14. 14.
    Goelzer, F., Faria-Tischer, P., Vitorino, J., Sierakowski, M.R., Tischer, C.: Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Mater. Sci. Eng. C 29(2), 546–551 (2009)CrossRefGoogle Scholar
  15. 15.
    Wu, J.M., Liu, R.H.: Cost-effective production of bacterial cellulose in static cultures using distillery wastewater. J. Biosci. Bioeng. 115(3), 284–290 (2013)CrossRefGoogle Scholar
  16. 16.
    Grohmann, K., Cameron, R., Buslig, B.: Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour. Technol. 54(2), 129–141 (1995)CrossRefGoogle Scholar
  17. 17.
    Kuo, C.H., Lin, P.J., Wu, Y.Q., Ye, L.Y., Yang, D.J., Shieh, C.J., Lee, C.K.: Simultaneous saccharification and fermentation of waste textiles for ethanol production. BioResources 9(2), 2866–2875 (2014)CrossRefGoogle Scholar
  18. 18.
    Taherzadeh, M.J., Karimi, K.: Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3), 472–499 (2007)Google Scholar
  19. 19.
    Almeida, J.R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., Gorwa-Grauslund, M.F.: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82(4), 340–349 (2007)CrossRefGoogle Scholar
  20. 20.
    Pocan, P., Bahcegul, E., Oztop, M.H., Hamamci, H.: Enzymatic hydrolysis of fruit peels and other lignocellulosic biomass as a source of sugar. Waste Biomass Valoriz. (2017). doi: 10.1007/s12649-017-9875-3 Google Scholar
  21. 21.
    Taher, I.B., Bennour, H., Fickers, P., Hassouna, M.: Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillusniger ATCC 16404 and Trichodermareesei DSMZ 970. Waste Biomass Valoriz. 8(1), 183–192 (2017)CrossRefGoogle Scholar
  22. 22.
    Kashyap, D., Vohra, P., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77(3), 215–227 (2001)CrossRefGoogle Scholar
  23. 23.
    Li, P.J., Xia, J.L., Shan, Y., Nie, Z.Y., Su, D.L., Gao, Q.R., Zhang, C., Ma, Y.L.: Optimizing production of pectinase from orange peel by Penicillium oxalicum PJ02 using response surface methodology. Waste Biomass Valoriz. 6(1), 13–22 (2015)CrossRefGoogle Scholar
  24. 24.
    Kuo, C.H., Chen, J.H., Liou, B.K., Lee, C.K.: Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll. 53, 98–103 (2016)CrossRefGoogle Scholar
  25. 25.
    Kuo, C.H., Lin, P.J., Lee, C.K.: Enzymatic saccharification of dissolution pretreated waste cellulosic fabrics for bacterial cellulose production by Gluconacetobacter xylinus. J. Chem. Technol. Biotechnol. 85(10), 1346–1352 (2010)CrossRefGoogle Scholar
  26. 26.
    Dien, B.S., Ximenes, E.A., O’Bryan, P.J., Moniruzzaman, M., Li, X.L., Balan, V., Dale, B., Cotta, M.A.: Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresour. Technol. 99(12), 5216–5225 (2008)CrossRefGoogle Scholar
  27. 27.
    Zhang, M., Su, R., Qi, W., He, Z.: Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl. Biochem. Biotechnol. 160(5), 1407–1414 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhang, J., Pakarinen, A., Viikari, L.: Synergy between cellulases and pectinases in the hydrolysis of hemp. Bioresour. Technol. 129, 302–307 (2013)CrossRefGoogle Scholar
  29. 29.
    Masaoka, S., Ohe, T., Sakota, N.: Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75(1), 18–22 (1993)CrossRefGoogle Scholar
  30. 30.
    Zhong, C., Zhang, G.C., Liu, M., Zheng, X.T., Han, P.P., Jia, S.R.: Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl. Microbiol. Biotechnol. 97(14), 6189–6199 (2013)CrossRefGoogle Scholar
  31. 31.
    Hsieh, J.T., Wang, M.J., Lai, J.T., Liu, H.S.: A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. Eng. 63, 46–51 (2016)CrossRefGoogle Scholar
  32. 32.
    Hernández-Carranza, P., Ávila-Sosa, R., Guerrero-Beltrán, J. A., Navarro-Cruz, A. R., Corona-Jiménez, E., Ochoa-Velasco, C. E.: Optimization of antioxidant compounds extraction from fruit by-products: apple pomace, orange and banana peel. J. Food Process. Preserv. 40(1), 103–115 (2016)CrossRefGoogle Scholar
  33. 33.
    Keshk, S. M.: Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr. Polym. 99, 98–100 (2014)CrossRefGoogle Scholar
  34. 34.
    Wu, J.M., Liu, R.H.: Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr. Polym. 90(1), 116–121 (2012)CrossRefGoogle Scholar
  35. 35.
    Shezad, O., Khan, S., Khan, T., Park, J.K.: Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr. Polym. 82(1), 173–180 (2010)CrossRefGoogle Scholar
  36. 36.
    Ul-Islam, M., Ha, J.H., Khan, T., Park, J.K.: Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr. Polym. 92(1), 360–366 (2013)CrossRefGoogle Scholar
  37. 37.
    Oh, S.Y., Yoo, D.I., Shin, Y., Kim, H.C., Kim, H.Y., Chung, Y.S., Park, W.H., Youk, J.H.: Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr. Res. 340(15), 2376–2391 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Seafood ScienceNational Kaohsiung Marine UniversityKaohsiungTaiwan
  2. 2.Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
  3. 3.Graduate Institute of Biomedical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  4. 4.Department of Health FoodChung Chou University of Science and TechnologyChanghuaTaiwan

Personalised recommendations