Waste and Biomass Valorization

, Volume 10, Issue 1, pp 167–178 | Cite as

Characterization and Biological Stabilization of Leachates From Solid Wastes in North-Centre SPAIN for Agricultural Application

  • Javier Domínguez
  • Carlos CostaEmail author
  • Belén Autrán
  • M. Carmen Márquez
Original Paper


Leachates from Waste Treatment Centres in Castilla and León region in north-centre Spain have been analyzed and classified attending organic load and nutrients. High content of nitrogen (402 ± 256–3133 ± 1221 mg/L) and potassium (570 ± 151–5120 ± 3421 mg/L) and low concentration of metals make leachate a valuable product for application in agriculture. Biological stabilization in an aerobic laboratory wastewater treatment plant (HRT = 2–10 days) has been studied for three selected leachates, in order to stabilize them before application in agricultural lands. Organic load and biodegradability are strongly influenced by composting fraction in leachate, showing low biodegradability (59.0%) high organic loaded leachates with high composting fraction. Medium and low organic loaded leachates, without composting fraction show high biodegradability (76.0 and 86.6%, respectively). Organic matter has to be differenced from COD, because high concentrations of ammonia, nitrite and chloride present in these liquids mask organic matter value. This work has the intention of being an example in using leachate from solid wastes biologically treated for agricultural disposal. For this purpose, low content of metals and toxics has to be demonstrated to assure soil and groundwater protection in accordance with EU regulations.


Waste treatment Leachate Solid wastes Biodegradation 



“Junta de Castilla y León (ADE)” and “Laboratorio Castilla y León, Valladolid Labaqua” are gratefully acknowledged for financial support (project 04/09/VA/0010). The authors want to thank the staff of the Waste Treatment Centres of León, Valladolid and Salamanca for their assistance. We would also want to thank Juan David Tejerina from “Valladolid-Labaqua” for his contribution in this research.


  1. 1.
    EUROSTAT: Environmental Data Centre on Waste: Municipal waste generation and treatment. Office for Official Publications of the European Communities, Luxembourg (2015)Google Scholar
  2. 2.
    Ding, A., Zhang, Z., Fu, J., Cheng, L.: Biological control of leachate from municipal landfills. Chemosphere. 44, 1–8 (2001)CrossRefGoogle Scholar
  3. 3.
    Martins, C.L., Fernandes, E., Costa, R.H.R: Landfill leachate treatment as measured by nitrogen transformations in stabilization ponds. Bioresour. Technol. 147, 562–568 (2013)CrossRefGoogle Scholar
  4. 4.
    Zhu, R., Wang, S., Li, J., Wang, K., Miao, L., Ma, B., Peng, Y.: Biological nitrogen removal from landfill leachate using anaerobic-aerobic process: Denitrification via organics in raw leachate and intracellular storage polymers of microorganisms. Bioresour. Technol. 128, 401–408 (2013)CrossRefGoogle Scholar
  5. 5.
    Robinson, H.D., Maris, P.J.: The treatment of leachates from domestic wastes in landfills. Water Res. 17, 1537–1548 (1983)CrossRefGoogle Scholar
  6. 6.
    Bae, B.U., Jung, E.S., Kim, Y.R., Shin, H.S.: Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Res. 33, 2669–2673 (1999)CrossRefGoogle Scholar
  7. 7.
    Im, J.H., Woo, H.J., Choi, M.W., Han, K.B., Kim, C.W.: Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Res. 35, 2403–2410 (2001)CrossRefGoogle Scholar
  8. 8.
    Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P.: Landfill leachate treatment: review and opportunity. J. Hazard. Mater. 150, 468–493 (2008)CrossRefGoogle Scholar
  9. 9.
    Li, H., Zhou, S., Sun, Y., Feng, P., Li, J.: Advanced treatment of landfill leachate by a new combination process in a full-scale plant. J. Hazard. Mater. 172, 408–415 (2009)CrossRefGoogle Scholar
  10. 10.
    Aziz, S.Q., Aziz, H.A., Yusoff, M.S., Bashir, M.J.K., Umar, M.: Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. J. Environ. Manag. 91(12), 2608–2614 (2010)CrossRefGoogle Scholar
  11. 11.
    Ziyang, L., Youcai, Z., Tao, Y., Yu, S., Huili, C., Nanwen, Z., Renhua, H.: Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages. Sci. Total Environ. 407(10), 3385–3391 (2009)CrossRefGoogle Scholar
  12. 12.
    Kheradmand, S., Karimi-Jashni, A., Sartaj, M.: Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system. Waste Manag. 30, 1025–1031 (2010)CrossRefGoogle Scholar
  13. 13.
    Calace, N., Liberatori, A., Petronio B.M., Pietroletti, M.: Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environ. Pollut. 113(3), 331–339 (2001).CrossRefGoogle Scholar
  14. 14.
    Directive 2008 98/EC on waste. Official Journal of the European Union, L 312/3 (2008)Google Scholar
  15. 15.
    Commission Decision 2014/955/EU. Official Journal of the European Union, L 370/44 (2014).Google Scholar
  16. 16.
    Ley 22 2011 de residuos y suelos contaminados. B. O. E. no 181, 13046 (2011).Google Scholar
  17. 17.
    INE: National Institute of Statistics in Spain. On-line: (2016)
  18. 18.
    A.P.H.A., A.W.W.A., W.E.F. (ed.): Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC (2005)Google Scholar
  19. 19.
    Ziyang, L., Youcai, Z.: Size-fractionation and characterization of refuse landfill leachate by sequential filtration using membranes with varied porosity. J. Hazard. Mater. 147(1–2), 257–264 (2007)CrossRefGoogle Scholar
  20. 20.
    Salem, Z., Hamouri, K., Djemaa, R., Allia, K.: Evaluation of landfill leachate pollution and treatment. Desalination. 220, 108–114 (2008)CrossRefGoogle Scholar
  21. 21.
    Xu, Z.-Y., Zeng, G.-M., Yang, Z.-H., Xiao, Y., Cao, M., Sun, H.-S., Ji, L.-L., Chen, Y.: Biological treatment of landfill leachate with the integration of partial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification. Bioresour. Technol. 101, 79–86 (2010)CrossRefGoogle Scholar
  22. 22.
    Frascari, D., Bronzini, F., Giordano, G., Tedioli, G., Nocentini, M.: Long-term characterization, lagoon treatment and migration potential of landfill leachate: a case study in an active Italian landfill. Chemosphere. 54(3), 335–343 (2004)CrossRefGoogle Scholar
  23. 23.
    Top, S., Sekman, E., Hoşver, S., Bilgili, M.S.: Characterization and electrocoagulative treatment of nanofiltration concentrate of a full-scale landfill leachate treatment plant. Desalination. 268(1–3), 158–162 (2011)CrossRefGoogle Scholar
  24. 24.
    Yu, J., Zhou, S., Wang, W.: Combined treatment of domestic wastewater with landfill leachate by using A2/O process. J. Hazard. Mater. 178, 81–88 (2010)CrossRefGoogle Scholar
  25. 25.
    Ahmed, F.N., Lan, C.Q.: Treatment of landfill leachate using membrane bioreactors: a review. Desalination. 287, 41–54 (2012)CrossRefGoogle Scholar
  26. 26.
    Yang, Z., Zhou, S.: The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic (SAA) bio-reactor system. Chemosphere. 72, 1751–1756 (2008)CrossRefGoogle Scholar
  27. 27.
    Castrillón, L., Fernández-Nava, Y., Ulmanu, M., Anger, I., Marañón, E.: Physico-chemical and biological treatment of MSW landfill leachate. Waste Manag. 30, 228–235 (2010)CrossRefGoogle Scholar
  28. 28.
    Tatsi, A.A., Zouboulis, A.I.: A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv. Environ. Res. 6(3), 207–219 (2002)CrossRefGoogle Scholar
  29. 29.
    Ministry of Environment: Iberian climate atlas. (2012)
  30. 30.
    Warith, M.: Bioreactor landfills: experimental and field results. Waste Manag. 22, 7–17 (2002)CrossRefGoogle Scholar
  31. 31.
    Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Weber, J.V.: Landfill leachate treatment methods: a review. Environ. Chem. Lett. 4, 51–61 (2006)CrossRefGoogle Scholar
  32. 32.
    Bu, L., Wang, K., Zhao, Q.-L., Wei, L.-L., Zhang, J., Yang, J.-C.: Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series. J. Hazard. Mater. 179(1–3), 1096–1105 (2010)CrossRefGoogle Scholar
  33. 33.
    Romero, C., Ramos, P., Costa, C., Márquez, M.C.: Raw and digested municipal waste compost leachate as potential fertilizer: comparison with a commercial fertilizer. J. Clean. Prod. 59, 73–78 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Chemical Engineering Department, Faculty of Chemical SciencesUniversity of SalamancaSalamancaSpain
  2. 2.Laboratorio Castilla y LeónValladolid-LabaquaValladolidSpain

Personalised recommendations