Waste and Biomass Valorization

, Volume 10, Issue 1, pp 13–22 | Cite as

A Review of the Primary By-product (Nejayote) of the Nixtamalization During Maize Processing: Potential Reuses

  • Roberto Castro-MuñozEmail author
  • Vlastimil Fíla
  • Enrique Durán-Páramo


The production of nixtamalized products worldwide has been increased over past decades. The first pre-treatment applied to maize is the well-known Nixtamalization procedure, which produces large quantities of its primary by-product called ‘Nejayote’; this by-product is commonly discarded into the urbanized sewage without any additional treatment. Recently, Nejayote has attracted attention due to its high organic load based on high content of organic (arabinoxylans, phenolic compounds, sugars, fibers) and inorganic compounds (calcium). Thus, this by-product may have potential for value-added processing and utilization, which can be alternatives, that simultaneous hold the promise of increased economic benefit for masa producers as well as decreased potential pollution for the environment. The goal of this paper is to provide a critical review of reusing this primary by-product. State-of-the-art of developments in the field are chronologically reported and described. Particular attention is paid to experimental results reported for the reclamation of its high-added value compounds that have been identified as the potential approach concerning on the utilization of the by-product. The recovered components have demonstrated biological activities that increase their potential exploitation.


High-added value compounds Maize-processing Nixtamalization Waste Recovery Recycling 





Biological oxygen demand


Chemical oxygen demand




Nixtamalization wastewaters







R. Castro-Muñoz acknowledges the European Commission—Education, Audiovisual and Culture Executive Agency (EACEA) for his PhD scholarship under the program: Erasmus Mundus Doctorate in Membrane Engineering – EUDIME (FPA No 2011-0014, Edition V, Part of this work was supported by the Operational Program Prague – Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability“(NPU I LO1613) (MSMT-43760/2015).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Gwirtz, J.A., García-Casal, M.N.: Processing maize flour and corn meal food products. Ann. NY. Acad. Sci. 1312, 66–75 (2014)CrossRefGoogle Scholar
  2. 2.
    Campechano Carrera, E.M., Figueroa Cárdenas, J.D., Arámbula Villa, G., Martínez Flores, H.E., Jiménez Sandoval, S.J., Luna Bárcenas, J.G.: New ecological nixtamalisation process for tortilla production and its impact on the chemical properties of whole corn flour and wastewater effluents. Int. J. Food Sci. Technol. 47, 564–571 (2012)CrossRefGoogle Scholar
  3. 3.
    Valderrama- Bravo, C., Gutíerrez-Cortez, E., Contreras-Padilla, M., Rojas-Molina, I., Mosquera, J.C., Rojas-Molina, A., Beristain, F., Rodríguez-García, M.E.: Constant pressure filtration of lime water (Nejayote) used to cook kernels in maize processing. J. Food Eng. 110, 478–486 (2012)CrossRefGoogle Scholar
  4. 4.
    Rojas-Molina, I., Gutiérrez, E., Cortés-Acevedo, M.E., Falcón, A., Bressani, R., Rojas, A., Ibarra, C., Pons-Hernández, J.L., Guzmán-Maldonado, S.H., Cornejo-Villegas, A., Rodríguez, M.E.: Analysis of quality protein changes in nixtamalized QPM flours as a function of the steeping time. Cereal Chem. 85, 409–416 (2008)CrossRefGoogle Scholar
  5. 5.
    Rojas-Molina, I., Gutiérrez, E., Rojas, A., Cortés-Álvarez, M., Campos-Solís, L., Hernández-Urbiola, M., Arjona, J.L., Cornejo, A., Rodríguez-García, M.: Effect of temperature and steeping time on calcium and phosphorus content in nixtamalized corn flours obtained by the traditional nixtamalization process. Cereal Chem. 86(5), 516–521 (2009)CrossRefGoogle Scholar
  6. 6.
    Gutiérrez, E., Rojas-Molina, I., Pons-Hernández, J.L., Guzmán, H., Aguas-Ángel, B., Arenas, J., Fernández, P., Palacios-Fonseca, A., Herrera, G., Rodríguez, M.E.: Study of calcium ion diffusion in nixtamalized quality protein maize as a function of cooking temperature. Cereal Chem. 84, 186–194 (2007)CrossRefGoogle Scholar
  7. 7.
    Niño-Medina, G., Carvajal-Millán, E., Lizardi, J., Rascon-Chu, A., Marquez-Escalante, J., Gardea, A., Martínez-López, A., Guerrero, V.: Maize processing wastewater arabinoxylans: gelling capability and cross-linking content. Food Chem. 115, 1286–1290 (2009)CrossRefGoogle Scholar
  8. 8.
    Salmeron-Alcocer, A., Rodriguez-Mendoza, N., Pineda-Santiago, V., Cristiani-Urbina, E., Juarez-Ramirez, C., Ruiz-Ordaz, N., Galindez-Mayer, J.: Aerobic treatment of maize-processing wastewater (nejayote) in a single-stream multi-stage bioreactor. J. Environ. Eng. Sci. 2, 401–406 (2003)CrossRefGoogle Scholar
  9. 9.
    Acosta-Estrada, B.A., Serna-Saldívar, S.O., Gutiérrez-Uribe, J.A.: Chemopreventive effects of feruloyl putrescines from wastewater (Nejayote) of lime-cooked white maize (Zea mays). J. Cereal Sci. 64, 23–28 (2015)CrossRefGoogle Scholar
  10. 10.
    Ayala-Soto, F.E., Serna-Saldivar, S.O., García-Lara, S., Pérez-Carrillo, E.: Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources. Food Hydrocoll. 35, 471–475 (2014)CrossRefGoogle Scholar
  11. 11.
    Acosta-Estrada, B.A., Lazo-Vélez, M.A., Nava-Valdez, Y., Gutiérrez-Uribe, J.A., Serna-Saldívar, S.O.: Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). J. Cereal Sci. 60, 264–269 (2014)CrossRefGoogle Scholar
  12. 12.
    Gutiérrez-Uribe, J., Rojas-García, C., García-Lara, S., Serna-Saldivar, S.: Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize processed into masa for tortillas. J. Cereal Sci. 52, 410–416 (2010)CrossRefGoogle Scholar
  13. 13.
    Lopez-Martinez, L.X., Oliart-Ros, R.M., Valerio-Alfaro, G., Lee, C.H., Parkin, K.L., Garcia, H.S.: Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Technol. 42, 1187–1192 (2009)CrossRefGoogle Scholar
  14. 14.
    Rosentrater, K.A.: A review of corn masa processing residues: generation, properties, and potential utilization. Waste Manag. 26(3), 284–292 (2006)CrossRefGoogle Scholar
  15. 15.
    Civit, E., Duran de Bazúa, C., Engelmann, G., González, S. & Hartmann, L.: Anaerobic treatment of maize processing waste water (Nejayote) in a packed bed reactor cascade. Environ. Technol. Lett. 5, 89–96 (1984)CrossRefGoogle Scholar
  16. 16.
    Pedroza de Brenes, R., Duran de Bazua, C.: RBC characteristics for nejayote aerobic treatment. Environ. Technol. Lett. 8(1), 579–588 (1987)CrossRefGoogle Scholar
  17. 17.
    Luna-Parabello, V.M., Aladro-Lubel, M.A., Durán de Bazúa, C.: Biomonitoring of wastewaters in treatment plants using ciliates. J. Ind. Microbiol. Biotechnol. 17, 62–68 (1996)Google Scholar
  18. 18.
    Pedroza-Islas, R., & Durán de Bazúa, C.: Aerobic treatment of maize-processing wastewater in a 50-liter rotating biological reactor. Biol. Wastes 32(1), 17–27 (1990)CrossRefGoogle Scholar
  19. 19.
    Ferreira- Rolón, A., Ramírez-Romero, G., Ramírez-Vives, F.: Granular sludges methanogenic activity increase due to CO2 bubbling calcium precipitation over Nejayote. Rev. Mex. Ing. Quim. 13(2), 517–525 (2014)Google Scholar
  20. 20.
    Gutíerrez-Macías, P., Montañez-Barragán, B., Barragán-Huerta, B.E.: A review of agro-food waste transformation into feedstock for use in fermentation. Fresen. Environ. Bull. 24, 3703–3716 (2015)Google Scholar
  21. 21.
    Valderrama-Bravo, C., Gutiérrez-Cortez, E., Contreras-Padilla, M., Oaxaca-Luna, A., Del Real Lopez, A., Espinosa-Arbelaez, D.G., Rodríguez-García, M.E.: Physico-mechanic treatment of nixtamalization by- product (Nejayote). CyTA J. Food 11, 75–83 (2013)CrossRefGoogle Scholar
  22. 22.
    García-Zamora, J.L., Sánchez-González, M., Lozano, J.A., Jáuregui, J., Zayas, T., Santacruz, V., Hernández, F., Torres, E.: Enzymatic treatment of wastewater from the corn tortilla industry using chitosan as an adsorbent reduces the chemical oxygen demand and ferulic acid content. Process Biochem. 50, 125–133 (2015)CrossRefGoogle Scholar
  23. 23.
    Meraz, K.A.S., Vargas, S.M.P., Maldonado, J.T.L., Bravo, J.M.C., Guzman, M.T.O., Maldonado, E.A.L.: Eco-friendly innovation for nejayote coagulation-flocculation process using chitosan: evaluation through zeta potential measurements. Chem. Eng. J. 284, 536–542 (2016)CrossRefGoogle Scholar
  24. 24.
    Lefebvre, O., Moletta, R.: Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 40, 3671–3682 (2006)CrossRefGoogle Scholar
  25. 25.
    Stevenson, R.A.A., Sarma, S.S.S., Nandini, S.: Population dynamics of Brachionus calyciflorus (Rotifera: Brachionidae) in waste water from food-processing industry in Mexico. Rev. Biol. Trop. 46(3), 595–600 (1998)Google Scholar
  26. 26.
    Velasco-Martinez, M., Angulo, O., Vazquez-Couturier, D.L., Arroyo-Lara, A., Monroy-Rivera, J.A.: Effect of dried solids of nejayote on broiler growth. Poult. Sci. 76(11), 1531–1534 (1997)CrossRefGoogle Scholar
  27. 27.
    González, R., Reguera, E., Figueroa, J.M., Martínez, J.L.: Study of the influence of Nejayote and other additives on the cohesive strength and electric properties of carbon black agglomerates. J. Appl. Polym. Sci. 90, 3965–3972 (2003)CrossRefGoogle Scholar
  28. 28.
    Nogueira-Terrones, H., Herman-Lara, E., García-Alvardo, M.A, Monroy-Rivera, J.A.: Drying kinetics and sorption isotherms of the Nejayote. Drying Technol. 22, 2173–2182 (2004)CrossRefGoogle Scholar
  29. 29.
    Díaz-Montes, E., Castro-Muñoz, R., Yáñez-Fernández, J.: An overview of Nejayote, a nixtamalization by product. Ingeniería Agrícola y Biosistemas 8(2), 41–60 (2016)CrossRefGoogle Scholar
  30. 30.
    Kratky, L., Jirout, T.: Biomass size reduction machines for enhancing biogas production. Chem. Eng. Technol. 3, 391–399 (2011)CrossRefGoogle Scholar
  31. 31.
    Behera, S., Arora, R., Nandhagopal, N., Kumar, S.: Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36, 91–106 (2014)CrossRefGoogle Scholar
  32. 32.
    Shahidi, F.: Functional foods: their role in health promotion and disease prevention. J. Food Sci. 69(5), R146–R149 (2004)CrossRefGoogle Scholar
  33. 33.
    Paz-Samaniego, R., Carvajal-Millan, E., Brown-Bojorquez, F., Rascón-Chu, A., López-Franco, Y. L., Sotelo-Cruz, N., Lizardi-Mendoza, J.: Gelation of arabinoxylans from maize wastewater—effect of alkaline hydrolysis conditions on the gel rheology and microstructure. Wastewater Treatment Eng. (2015)Google Scholar
  34. 34.
    Carvajal-Millán, E.: An alternative to convert residues of corn “nixtamalización” process as a high-value product. Tecnociencia Chihuahua 1(2), 1–5 (2007)Google Scholar
  35. 35.
    Berlanga-Reyes, C., Carvajal-Millan, E., Niño-Medina, G., Rascón-Chu, A., Ramírez-Wong, B., Magaña-Barajas, E.: Low-value maize and wheat by-products as a source of ferulated arabinoxylans. García Einschlag, F.S. (eds.) Waste Water - Treatment and Reutilization, InTech, Rijeka (2011)CrossRefGoogle Scholar
  36. 36.
    Galanakis, C.M.: Recovery of high-added value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012)CrossRefGoogle Scholar
  37. 37.
    Galanakis, C. M.: Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod. Process. 91, 575–579 (2013)CrossRefGoogle Scholar
  38. 38.
    Cassano, A., Conidi, C., Galanakis, C.M., Castro-Muñoz, R.: Recovery of polyphenols from olive mill wastewaters by membrane operations. In: Figoli, A., Cassano, A., Basile, A. (eds.) Membrane technologies for biorefining. Elsevier, London (2016)Google Scholar
  39. 39.
    Conidi, C., Cassano, A., Drioli, E.: Recovery of phenolic compounds from orange press liquor by nanofiltration. Food Bioprod. Process. 90, 867–874 (2012)CrossRefGoogle Scholar
  40. 40.
    Cassano, A., Conidi, C., Ruby Figueroa, R., Castro-Muñoz, R.: A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int. J. Mol. Sci. 16, 8968–8987 (2015)CrossRefGoogle Scholar
  41. 41.
    Conidi, C., Mazzei, R., Cassano, A., Giorno, L.: Integrated membrane system for the production of phytotherapics from olive mill wastewaters. J. Membr. Sci. 454, 322–329 (2014)CrossRefGoogle Scholar
  42. 42.
    Conidi, C., Cassano, A., Garcia-Castello, E.: Valorization of artichoke wastewaters by integrated membrane process. Water Res. 48, 363–374 (2014)CrossRefGoogle Scholar
  43. 43.
    Castro-Muñoz, R., Orozco-Álvarez, C., Cerón-Montes, G.I., Yáñez-Fernández, J.: Characterization of the microfiltration process for the treatment of nixtamalization wastewaters. Ingeniería Agricola y Biosistemas 7(1), 23–34 (2015)CrossRefGoogle Scholar
  44. 44.
    Castro-Muñoz, R., Cerón-Montes, G.I, Barragán-Huerta, B.E., Yáñez-Fernández, J.: Recovery of carbohydrates from nixtamalization wastewaters (Nejayote) by ultrafiltration. Rev. Mex. Ing. Quim. 14(3), 735–744 (2015)Google Scholar
  45. 45.
    Castro-Muñoz, R., Yáñez-Fernández, J.: Valorization of Nixtamalization wastewaters by integrated membrane process. Food Bioprod. Process. 95, 7–18 (2015)CrossRefGoogle Scholar
  46. 46.
    Castro-Muñoz, R., Barragán-Huerta, B.E., Yáñez-Fernández, J.: The use of nixtamalization waste waters clarified by ultrafiltration for production of a fraction rich in phenolic compounds. Waste Biomass Valori. 7, 1167–1176 (2016)CrossRefGoogle Scholar
  47. 47.
    Castro-Muñoz, R., Yáñez-Fernández, J., Fíla, V.: Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview. Food Chem. 213, 753–762 (2016)CrossRefGoogle Scholar
  48. 48.
    Galanakis, C.M.: Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. 42, 44–63 (2015)CrossRefGoogle Scholar
  49. 49.
    Crespo, J. G., & Brazinha, C.: Membrane processing: natural antioxidants from winemaking by-products. Filtr. Separat. 47, 32–35 (2010)CrossRefGoogle Scholar
  50. 50.
    Ochando-Pulido, J.M., & Martinez-Ferez, A.: On the recent use of membrane technology for olive mill wastewater purification. Membranes 5, 513–531 (2015)CrossRefGoogle Scholar
  51. 51.
    Al-Amoudi, A., Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 303, 4–28 (2007)CrossRefGoogle Scholar
  52. 52.
    Sanchez-Gonzalez, M., Blanco-Gamez, A., Escalante, A., Valladares, A.G., Olvera, C., Parra, R.: Isolation and characterization of new facultative alkaliphilic Bacillus flexus strains from maize processing waste water (Nejayote). Lett. Appl. Microbiol. 52(4), 413–419 (2011)CrossRefGoogle Scholar
  53. 53.
    Ramírez-Romero, G., Reyes-Velazquez, M., Cruz-Guerrero, A.: Study of Nejayote as culture medium for probiotics and production of bacteriocins. Rev. Mex. Ing. Quim. 12(3), 463–471 (2013)Google Scholar
  54. 54.
    Salazar-Magallon, J.A., Hernandez-Velazquez, V.M., Alvear-Garcia, A., Arenas-Sosa, I., Peña-Chora, G.: Evaluation of industrial by-products for the production of Bacillus thuringiensis strain GP139 and the pathogenicity when applied to Bemisia tabaci nymphs. Bull. Insectol. 68(1), 103–109 (2015)Google Scholar
  55. 55.
    Mathew, S., Abraham, T.E.: Bioconversions of ferulic acid and hydroxycinnamic acid. Crit. Rev. Microbiol. 32, 115–125 (2006)CrossRefGoogle Scholar
  56. 56.
    Retes-Mantilla, R.F., Torres-Mancera, M.T., Lugardo-Bravo, M.T.: Economic benefits for the food and beverage industry in Mexico with the use of vanillin obtained from nejayote. Custos e Agronegocio 11(3), 86–105 (2015)Google Scholar
  57. 57.
    El-Shourbagy, G.A., El-Zahar, K.M.: Oxidative stability of ghee as affected by natural antioxidants extracted from food processing wastes. Ann. Agric. Sci. 59(2), 213–220 (2014)Google Scholar
  58. 58.
    Rojas-García, C., García-Lara, S., Serna-Saldivar, S.O., Gutiérrez-Uribe, J.A.: Chemopreventive effects of free and bound phenolics associated to steep waters (Nejayote) obtained after nixtamalization of different maize types. Plant Foods Hum. Nutr. 67(1), 94–99 (2012)CrossRefGoogle Scholar
  59. 59.
    Valderrama-Bravo, C., Domínguez-Pacheco, F., Hernández-Aguilar, C., Flores-Saldaña, N., Villagran-Ortíz, P., Pérez-Reyes, C., Sanchez-Hernández, G., Oaxaca-Luna, A.: Effect of nixtamalized maize with lime water (Nejayote) on rheological and microbiological properties of Masa. J. Food Process. Preserv. 41, 1–9 (2016). doi: 10.1111/jfpp.12748 Google Scholar
  60. 60.
    Galanakis, C.M., Castro-Muñoz, R., Cassano, A., Conidi, C.: Recovery of high-added-value compounds from food waste by membrane technology. In: Figoli, A., Cassano, A., Basile, A., Membrane technologies for biorefining. Elsevier, London (2016)Google Scholar
  61. 61.
    Galanakis, C.M., Schieber, A.: Recovery and utilization of valuable compounds from food processing by-products. Food Res. Int. 65, 299–300 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Roberto Castro-Muñoz
    • 1
    Email author
  • Vlastimil Fíla
    • 1
  • Enrique Durán-Páramo
    • 2
  1. 1.University of Chemistry and Technology PraguePrague 6Czech Republic
  2. 2.Laboratorio de Bioconversiones, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico NacionalMexicoMexico

Personalised recommendations