Waste and Biomass Valorization

, Volume 10, Issue 1, pp 95–102 | Cite as

Antioxidant Capacity of Lignin and Phenolic Compounds from Corn Stover

  • Gabriela Vazquez-Olivo
  • Leticia X. López-Martínez
  • Laura Contreras-Angulo
  • J. Basilio HerediaEmail author
Original Paper


Corn stover, remaining after maize production, is produced worldwide. Despite being a residue, it contains bioactive compounds. Phenolic acids and lignin from maize plants were quantified to assess the possibility of valorization of this biomass. Extracts of the dry stem, root, cob, husk, leaf and grain of the maize plant were prepared using ethanol and alkaline hydrolysis. These were further subjected to acid hydrolysis to extract lignin and subsequently evaluated for their total phenolic content (TPC) and antioxidant capacity using two methods: measurement of the scavenging capacity against DPPH radical (2,2-diphenyl-1-picryl-hydrazyl) and the oxygen radical absorbance capacity (ORAC). The extracts showed a TPC of 219.67–1420.94 mg EAG 100 g−1. The antioxidant capacity of the extracts by DPPH scavenging was 1.11–11.75 mmol ET g−1, and their ORAC was 15.43–591.41 µmol ET g−1. Two phenolic acids (p-coumaric and ferulic acid) were identified in the samples using UPLC–PDA. The total lignin content (4.88–32.12%), TPC (3.4–16.9 mg EAG 100 g−1) and antioxidant capacity by DPPH scavenging (1.8–2.55 mmol ET g−1), as well as ORAC (0.8–3.9 µmol ET g−1), of the maize organs were assessed. The results suggest that corn stover is a potential source of natural antioxidants.


Lignin Phenolic compounds Corn stover Lignocellulosic biomass 



The authors are grateful for the scholarship received by Gabriela Vazquez-Olivo from the Consejo Nacional de Ciencia y Tecnologia (CONACYT, México), also for the Research Grant 252416. The authors would like to thank Edith Salazar-Villa and Alexis Emus-Medina from the Centro de Investigación en Alimentación y Desarrollo, AC (CIAD, Culiacán, México) for their technical support. For his statistical advisory we thank Dr Benigno Valdez-Torres.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Patel, S.: Cereal bran fortified-functional foods for obesity and diabetes management: triumphs, hurdles and possibilities. J. Funct. Foods. 14, 255–269 (2015)CrossRefGoogle Scholar
  2. 2.
    Figueiredo-González, M., Valentão, P., Andrade, P.B.: Tomato plant leaves: From by-products to the management of enzymes in chronic diseases. Ind. Crops Prod. 94, 621–629 (2016)CrossRefGoogle Scholar
  3. 3.
    Buranov, A.U., Mazza, G.: Lignin in straw of herbaceous crops. Ind. Crops Prod. 28(3), 237–259 (2008)CrossRefGoogle Scholar
  4. 4.
    SIAP-SAGARPA: Maíz forrajero. (2014). Accessed 08 June 2016
  5. 5.
    Buranov, A.U., Mazza, G.: Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food. Chem. 115(4), 1542–1548 (2009)CrossRefGoogle Scholar
  6. 6.
    Mounguengui, S., Tchinda, J.-B.S., Ndikontar, M.K., Dumarçay, S., Attéké, C., Perrin, D., Gelhaye, E., Gérardin, P.: Total phenolic and lignin contents, phytochemical screening, antioxidant and fungal inhibition properties of the heartwood extractives of ten Congo Basin tree species. Ann. For. Sci. 73, 1–10 (2015)Google Scholar
  7. 7.
    Adom, K.K., Liu, R.H.: Antioxidant activity of grains. J. Agric. Food. Chem. 50(21), 6182–6187 (2002)CrossRefGoogle Scholar
  8. 8.
    Lopez-Martinez, L.X., Oliart-Ros, R.M., Valerio-Alfaro, G., Lee, C.-H., Parkin, K.L., Garcia, H.S.: Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Technol. 42(6), 1187–1192 (2009)CrossRefGoogle Scholar
  9. 9.
    Sultana, B., Hussain, Z., Asif, M., Munir, A.: Investigation on the antioxidant activity of leaves, peels, stems bark, and kernel of mango (Mangifera indica L.). J. Food Sci. 77(8), C849–C852 (2012)CrossRefGoogle Scholar
  10. 10.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. In: Procedure, L.A. (ed.) National Renewable Energy Laboratory, 1617, 1–16 (2008)Google Scholar
  11. 11.
    TAPPI: Acid-insoluble lignin in wood and pulp. TAPPI Test Method T222 (2002)Google Scholar
  12. 12.
    Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999)CrossRefGoogle Scholar
  13. 13.
    Brand-Williams, W., Cuvelier, M.-E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28(1), 25–30 (1995).CrossRefGoogle Scholar
  14. 14.
    Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J.A., Prior, R.L.: High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50(16), 4437–4444 (2002)CrossRefGoogle Scholar
  15. 15.
    González-Muñoz, A., Quesille-Villalobos, A.M., Fuentealba, C., Shetty, K., Gálvez Ranilla, L.: Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. J. Agric. Food. Chem. 61(46), 10995–11007 (2013)CrossRefGoogle Scholar
  16. 16.
    Okarter, N.: Phenolic compounds from the insoluble-bound fraction of whole grains do not have any cellular antioxidant activity. Life Sci. Med. Res. 37, 1–10 (2012)Google Scholar
  17. 17.
    Das, A.K., Singh, V.: Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem. 201, 298–306 (2016)CrossRefGoogle Scholar
  18. 18.
    Hosseinian, F., Mazza, G.: Triticale bran and straw: potential new sources of phenolic acids, proanthocyanidins, and lignans. J. Funct. Foods. 1(1), 57–64 (2009)CrossRefGoogle Scholar
  19. 19.
    Torre, P., Aliakbarian, B., Rivas, B., Domínguez, J.M., Converti, A.: Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem. Eng. J. 40(3), 500–506 (2008).CrossRefGoogle Scholar
  20. 20.
    Retes-Mantilla, R.F., Torres-Mancera, M.T., Lugardo-Bravo, M.T.: Ventajas económicas para la industria de alimentos y bebidas en México con el uso de la vainillina obtenida del nejayote. Universidade Federal Rural de Pernambuco. (2015). Accessed 19 Oct 2015
  21. 21.
    Sant’Anna, V., Biondo, E., Kolchinski, E.M., da Silva, L.F.S., Corrêa, A.P.F., Bach, E., Brandelli, A.: Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste Biomass Valorization 8(2), 1–4 (2017)Google Scholar
  22. 22.
    Schaich, K., Tian, X., Xie, J.: Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods. 14, 111–125 (2015)CrossRefGoogle Scholar
  23. 23.
    Simsek, S., El, S.N., Kilinc, A.K., Karakaya, S.: Vegetable and fermented vegetable juices containing germinated seeds and sprouts of lentil and cowpea. Food Chem. 156, 289–295 (2014)CrossRefGoogle Scholar
  24. 24.
    Luthria, D.L., Liu, K., Memon, A.A.: Phenolic acids and antioxidant capacity of distillers dried grains with solubles (DDGS) as compared with corn. J. Amer. Oil. Chem. Soc. 89(7), 1297–1304 (2012)Google Scholar
  25. 25.
    Irakli, M.N., Samanidou, V.F., Biliaderis, C.G., Papadoyannis, I.N.: Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food. Chem. 134(3), 1624–1632 (2012)CrossRefGoogle Scholar
  26. 26.
    Kováčová, M., Malinová, E.: Ferulic and coumaric acids, total phenolic compounds and their correlation in selected oat genotypes. Czech J. Food Sci. 25, 325–332 (2007)Google Scholar
  27. 27.
    Liyana-Pathirana, C.M., Shahidi, F.: Importance of insoluble-bound phenolics to antioxidant properties of wheat. J. Agric. Food. Chem. 54(4), 1256–1264 (2006)CrossRefGoogle Scholar
  28. 28.
    Maillard, M.-N., Berset, C.: Evolution of antioxidant activity during kilning: role of insoluble bound phenolic acids of barley and malt. J. Agric. Food. Chem. 43(7), 1789–1793 (1995)CrossRefGoogle Scholar
  29. 29.
    Ou, J., Sun, Z.: Feruloylated oligosaccharides: structure, metabolism and function. J. Funct. Foods. 7, 90–100 (2014)CrossRefGoogle Scholar
  30. 30.
    Šukalović, V.H.-T, Vuletić, M., Vučinić, Ž.: The role of p-coumaric acid in oxidative and peroxidative cycle of the ionically bound peroxidase of the maize root cell wall. Plant Sci. 168(4), 931–938 (2005)CrossRefGoogle Scholar
  31. 31.
    Šukalović, V.H.-T., Vuletić, M.: The characterization of peroxidases in mitochondria of maize roots. Plant Sci. 164(6), 999–1007 (2003)CrossRefGoogle Scholar
  32. 32.
    Llano, T., Alexandri, M., Koutinas, A., Gardeli, C., Papapostolou, H., Coz, A., Quijorna, N., Andres, A., Komaitis, M.: Liquid–liquid extraction of phenolic compounds from spent sulphite liquor. Waste Biomass Valorization 6(6), 1149–1159 (2015).CrossRefGoogle Scholar
  33. 33.
    Hatfield, R., Fukushima, R.S.: Can lignin be accurately measured? Crop Sci. 45(3), 832–839 (2005)CrossRefGoogle Scholar
  34. 34.
    Suzuki, S., Suzuki, Y., Yamamoto, N., Hattori, T., Sakamoto, M., Umezawa, T.: High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol. 26(3), 337–340 (2009)CrossRefGoogle Scholar
  35. 35.
    Schroyen, M., Vervaeren, H., Vandepitte, H., Van Hulle, S.W., Raes, K.: Effect of enzymatic pretreatment of various lignocellulosic substrates on production of phenolic compounds and biomethane potential. Bioresour. Technol. 192, 696–702 (2015)CrossRefGoogle Scholar
  36. 36.
    Wang, G., Chen, H.: Enhanced lignin extraction process from steam exploded corn stalk. Sep. Purif. Technol. 157, 93–101 (2016)CrossRefGoogle Scholar
  37. 37.
    Lee, D.: Composition of Herbaceous Biomass Feedstocks. North Central Sun Grant Center, South Dakota State University, Brookings (2007)Google Scholar
  38. 38.
    Mendes, C.A.D.C., Adnet, F.A.D.O., Leite, M.C.A.M., Furtado, C.R.G., De Sousa, A.M.F.: Chemical, physical, mechanical, thermal and morphological characterization of corn husk residue. Cell. Chem. Technol. 1, 10 (2015)Google Scholar
  39. 39.
    Rivas, B., Domınguez, J., Domınguez, H., Parajó, J.: Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme Microb. Technol. 31(4), 431–438 (2002)CrossRefGoogle Scholar
  40. 40.
    Saulnier, L., Marot, C., Chanliaud, E., Thibault, J.-F.: Cell wall polysaccharide interactions in maize bran. Carbohydr. Polym. 26(4), 279–287 (1995)CrossRefGoogle Scholar
  41. 41.
    Machinet, G.E., Bertrand, I., Barrière, Y., Chabbert, B., Recous, S.: Impact of plant cell wall network on biodegradation in soil: Role of lignin composition and phenolic acids in roots from 16 maize genotypes. Soil Biol. Biochem. 43(7), 1544–1552 (2011)CrossRefGoogle Scholar
  42. 42.
    Cabrera-Soto, M.L., Salinas-Moreno, Y., Velázquez-Cardelas, G.A., Espinosa Trujillo, E.: Contenido de fenoles solubles e insolubles en las estructuras del grano de maíz y su relación con propiedades físicas. Agrociencia 43(8), 827–839 (2009).Google Scholar
  43. 43.
    Dizhbite, T., Telysheva, G., Jurkjane, V., Viesturs, U.: Characterization of the radical scavenging activity of lignins––natural antioxidants. Bioresour. Technol. 95(3), 309–317 (2004)CrossRefGoogle Scholar
  44. 44.
    Vanderghem, C., Jacquet, N., Richel, A.: Can lignin wastes originating from cellulosic ethanol biorefineries act as radical scavenging agents? Aust. J. Chem. 67(11), 1693–1699 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Nutraceuticals and Functional Foods DepartmentConacyt- Centro de Investigación en Alimentación y Desarrollo, ACCuliacánMéxico

Personalised recommendations