Waste and Biomass Valorization

, Volume 10, Issue 1, pp 103–119 | Cite as

Increasing the Nutrient Content in a Mine Soil Through the Application of Technosol and Biochar and Grown with Brassica juncea L.

  • Rubén ForjánEmail author
  • Alfonso Rodríguez-Vila
  • Emma F. Covelo
Original Paper


Mining is an anthropogenic activity that causes a profound environmental impact in many parts of the world, including soil degradation through physical, chemical and biological transformations. Mine soils are nutritionally deprived habitats characterized by unfertile soil with low pH values, a low cation exchange capacity (CEC), low nutrient availability, and poor organic matter. Today, techniques such as the use of technosols and biochar are starting to be used with the aim of recovering these soils. In this experiment we will compare the nutrient supply, increased pH, total carbon, total nitrogen (TN) and CEC of two treatments made of different amendments (technosol and biochar) on a mine soil. We will also determine the capacity of biochar to fix nutrients and enhance the positive effects of technosols in order to achieve the continuous growth of Brassica juncea L. The effects of the treatments were studied at three different depths over the 45-cm length of each cylinder. The study lasted a total of 11 months, using a settling pond from a depleted copper mine in Touro (Galicia, north-west Spain). The results of this experiment revealed that the treatments applied increased the pH, nutrient, total carbon, TN and CEC values. In turn, in the majority of the factors studied, the treatment combining the technosol and biochar was the most effective, with the B. juncea L. grown on this treatment having the highest biomass values.


Technosol Biochar Nutrients Mining Soil recovery Brassica juncea L. 



This work was supported by the Spanish Ministry of Economy and Competitiveness under project CGL2016-78660-R.


  1. 1.
    Ohsowski, B.M., Klironomos, J.N., Dunfield, K.E., Hart, M.M.: The potential of soil amendments for restoring severely disturbed grasslands. Appl. Soil. Ecol. 60, 77–83 (2012)CrossRefGoogle Scholar
  2. 2.
    Rivas-Pérez, I.M., Fernández-Sanjurjo, M.J., Núñez-Delgado, A., Monterroso, C., Macías, F., Álvarez-Rodríguez, E.: Evolution of chemical characteristics of technosols in an afforested coal mine dump over a 20-year period. Land Degrad. Dev. (2016). doi: 10.1002/ldr.24 Google Scholar
  3. 3.
    Shrestha, R.K., Lal, R.: Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 16, 168–176 (2011)CrossRefGoogle Scholar
  4. 4.
    Juwarkar, A.A., Yadav, S.K., Thawale, P.R., Kumar, P., Singh, S.K., Chakrabarti, T.: Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study. Environ. Monit. Assess. 157, 471–481 (2009)CrossRefGoogle Scholar
  5. 5.
    Santos, E.S., Abreu, M.M., Macías, F., de Varennes, A.: Improvement of chemical and biological properties of gossan mine wastes following application of amendments and growth of Cistus ladanifer L. J. Geochem. Explor. 147, 173–181 (2014)CrossRefGoogle Scholar
  6. 6.
    Zorzona, R., Faz, A., Carmona, D.M., Kabas, S., Martínez-Martínez, S., Acosta, J.A.: Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments. Pedosphere 22, 22–32 (2012)CrossRefGoogle Scholar
  7. 7.
    Wong, M.H.: Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere. 50, 775–780 (2003)CrossRefGoogle Scholar
  8. 8.
    FAO.: World Reference Base Soil Resources. IUSS, ISRIC, FAO, Rome (2014)Google Scholar
  9. 9.
    Macía, P., Fernández-Costas, C., Rodríguez, E., Sieiro, P., Pazos, M., Sanromán, M.A.: Technosols as a novel valorization strategy for an ecological management of dredged marine sediments. Ecol. Eng. 67, 182–189 (2014)CrossRefGoogle Scholar
  10. 10.
    Asensio, V., Vega, F.A., Sing, B.R., Covelo, F.: Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Sci. Total Environ. 443, 446–453 (2013)CrossRefGoogle Scholar
  11. 11.
    Punshon, T., Adriano, D., Weber, J.T.: Restoration of drastically eroded land using coal fly ash and poultry biosolid. Sci. Total Environ. 296, 209–225 (2002)CrossRefGoogle Scholar
  12. 12.
    Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H., Wang, Z.: Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments 17, 780–789 (2017)CrossRefGoogle Scholar
  13. 13.
    Oustriere, N., Marchand, L., Rosette, G., Friesl-Hanl, W., Mench, M.: Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil. Environ. Sci. Pollut. Res. 24, 7468–7481 (2017)CrossRefGoogle Scholar
  14. 14.
    Fowles, M.: Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 31, 426–432 (2007)CrossRefGoogle Scholar
  15. 15.
    Beesley, L., Marmiroli, M.: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ. Pollut. 159, 474–480 (2011)CrossRefGoogle Scholar
  16. 16.
    Biedermand, H., Harpole, W.S.: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5, 202–214 (2013)CrossRefGoogle Scholar
  17. 17.
    Madiba, O.F., Solaiman, Z.M., Carson, J.K., Murphy, D.V.: Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biol. Fertil. Soils 52, 439–446 (2016)CrossRefGoogle Scholar
  18. 18.
    Fellet, G., Marchiol, L., Delle, V.G., Peressotti, A.: Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83, 1262–1267 (2011)CrossRefGoogle Scholar
  19. 19.
    Tordoff, G.M., Baker, A.J.M., Willis, A.J.: Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere. 41, 219–228 (2000)CrossRefGoogle Scholar
  20. 20.
    Kumpiene, J., Lagerkvist, A., Maurice, C.: Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manag. 28, 215–225 (2008)CrossRefGoogle Scholar
  21. 21.
    Zhou, L., Li, Z., Liu, W., Liu, S., Zhang, L., Zhong, L., Luo, X., Liang, H.: Restoration of rare earth mine areas: organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 22, 17151–17160 (2015)CrossRefGoogle Scholar
  22. 22.
    Reverchon, F., Yang, H., Ho, T.Y., Yan, G., Wang, J., Xu, Z., Chen, C.H., Zhang, D.: A preliminary assessment of the potential of using an acacia—biochar system for spent mine site rehabilitation. Environ. Sci. Pollut. Res. 22, 2138–2144 (2015)CrossRefGoogle Scholar
  23. 23.
    Lombi, E., Zhao, F.J., Dunham, S.J., McGrath, S.P.: Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30, 1919–1926 (1999)CrossRefGoogle Scholar
  24. 24.
    Do Nascimento, C.W., Amarasiriwardena, D., Xing, B.: Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ. Pollut. 140, 114–123 (2006)CrossRefGoogle Scholar
  25. 25.
    Rodríguez-Vila, A., Covelo, E.F., Forján, R., Asensio, V.: Phytoremediating a copper mine soil with Brassica juncea L. compost and biochar. Environ. Sci. Pollut. Res. 21, 11293–11304 (2014)CrossRefGoogle Scholar
  26. 26.
    Porta, J.: Técnicas y Experimentos de Edafología. Collegi Oficial D’enginyers Agronoms de Catalunya, Barcelona (1986)Google Scholar
  27. 27.
    Hendershot, W.H., Duquette, M.: A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci. Soc. Am. J. 50, 605–608 (1986)CrossRefGoogle Scholar
  28. 28.
    Macías Vázquez, F., Calvo de Anta, R.: Niveles genéricos de referencia de metales pesados y otros elementos traza en los suelos de Galicia. Xunta de Galicia, Santiago (2009)Google Scholar
  29. 29.
    Buol, S.W., Sanchez, P.A., Cate, R.B., Granger, M.A.: Soil fertility capability classification. In: Bornemizza, E., Alvarado, A. (eds.) Soil Management and the Development Process in Tropical America, pp. 126–146. NCS University, Raleigh (1975)Google Scholar
  30. 30.
    Macías, F., Calvo, R.: El análisis del medio físico y su aplicación a la ordenación del territorio: una experiencia piloto en el área de Padrón (La Coruña). Trab. Compostelanos Biol. 10, 179–208 (1983)Google Scholar
  31. 31.
    Calvo de Anta, R., Macías, F.: Suelos de elevada aptitud agronómica de la provincia de la Coruña. Diputación Provincial de La Coruña, Coruña (1987)Google Scholar
  32. 32.
    Calvo, R., Macías, F., Buurman, P.: Procesos de Alteración y Neoformación mineral en medios serpentínicos de Galicia. Cuad. Lab. Xeolóxico Laxe. 11, 161–170 (1987)Google Scholar
  33. 33.
    Pataca, O.D.: Caracterización de drenajes de minas. In: Instituto Geológico y Minero de España. Manual de restauración de terrenos y elevaciones de impactos ambientales en minería. Ministerio de Educación y Ciencia, Madrid (2004)Google Scholar
  34. 34.
    Amir, S., Hafidi, M., Merlina, G., Revel, J.: Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 59, 801–810 (2005)CrossRefGoogle Scholar
  35. 35.
    Weber, J., Karczewska, A., Drozd, J., Licznar, M., Licznar, S., Jamroz, E., Kocowicz, A.: Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem. 39, 1294–1302 (2007)CrossRefGoogle Scholar
  36. 36.
    Karer, J., Wawra, A., Zehetner, F., Dunst, G., Wagner, M., Pavel, P.B., Puschenreiter, M., Friesl-Hanl, W., Soja, G.: Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water Air Soil Pollut. 226, 342 (2015). doi: 10.1007/s11270-015-2584-2 CrossRefGoogle Scholar
  37. 37.
    Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N., Pei, J., Huang, H.: Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 2, 8472–8483 (2013)CrossRefGoogle Scholar
  38. 38.
    Vega, F.A., Covelo, E.F., Andrade, M.L.: Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degrad. Dev. 16, 27–36 (2005)CrossRefGoogle Scholar
  39. 39.
    Bendfeldt, E.S., Burger, J.S., Daniels, W.L.: Quality of amended mine soils after sixteen years. Soil Sci. Soc. Am. J. 65, 1736–1744 (2001)CrossRefGoogle Scholar
  40. 40.
    Illera, V., Walter, I., Souza, P., Cala, V.: Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soil under a semi-arid environment. Sci. Total Environ. 255, 29–44 (2000)CrossRefGoogle Scholar
  41. 41.
    Paradelo, R., Villada, A., Barral, M.T.: Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost. J. Hazard. Mater. 188, 98–104 (2011)CrossRefGoogle Scholar
  42. 42.
    Canet, R., Pomares, F., Cabot, B., Chaves, C., Ferrer, E., Ribó, M., Albiach, M.R.: Composting olive mill pomace and other residues from rural southeasthern Spain. Waste Manage. 28, 2585–2592 (2007)CrossRefGoogle Scholar
  43. 43.
    Nicholson, F.A., Chambers, B.J., Smith, K.A.: Nutrient composition of poultry manures in England and Wales. Bioresour. Technol. 58, 279–284 (1996)CrossRefGoogle Scholar
  44. 44.
    Yujun, S., Limei, R., Guoxue, L., Tongbin, Ch., Rui, G: Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture. Waste Manage. 31, 33–38 (2011)CrossRefGoogle Scholar
  45. 45.
    Lal, R.: Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 17, 197–209 (2006)CrossRefGoogle Scholar
  46. 46.
    Ahirwal, J., Maiti, S.K., Satyanarayana Reddy, M.: Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. CATENA 156, 42–50 (2017)CrossRefGoogle Scholar
  47. 47.
    Christensen, B.T.: Tightening the nitrogen cycle. In: Schjonning, P., Elmholt, S., Christensen, B.T. (eds.) Managing Soil Quality, Challenges in Modern Agriculture, pp. 44–66. CABI, London (2004)Google Scholar
  48. 48.
    Yang, S.X., Liao, B., Yang, Z.X., Chai, L.Y., Li, J.T.: Revegetation of extremely acid mine soils based on aided phytostabilization: a case study from southern China. Sci. Total Environ. 562, 427–434 (2016)CrossRefGoogle Scholar
  49. 49.
    Tejada, M., Parrado, J., Hernández, T., García, C.: The biochemical response to different Cr and Cd concentrations in soils amended with organic wastes. J. Hazard. Mater. 185, 204–211 (2010)CrossRefGoogle Scholar
  50. 50.
    Kumar, R., Bhatia, R., Kukreja, K., Behl, R.K., Dudeja, S.S., Narula, N.: Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J. Basic Microbiol. 47, 436–439 (2007)CrossRefGoogle Scholar
  51. 51.
    Germida, J.J., Siciliano, S.D., de Freitas, J.R., Seib, A.M.: Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26, 43–50 (1998)CrossRefGoogle Scholar
  52. 52.
    Misko, A.L., Germida, J.J.: Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol. Ecol. 42, 399–407 (2002)CrossRefGoogle Scholar
  53. 53.
    Zhou, X., Wu, H., Koetz, E., Xu, Z., Chen, Ch: Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment. Appl. Soil Ecol. 53, 49–55 (2012)CrossRefGoogle Scholar
  54. 54.
    Hazelton, P., Murphy, B.: Interpreting Soil Test Results. What Do All the Numbers Mean? CSIRO, Collingwood (2007)Google Scholar
  55. 55.
    Perez-Esteban, J., Escolastico, C., Masaguer, A., Moliner, A.: Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Eur. J. Soil Sci. 63, 733–742 (2012)CrossRefGoogle Scholar
  56. 56.
    Ippolito, J.A., Laird, D.A., Busscher, W.J.: Environmental benefits of biochar. J. Environ. Qual. doi: 10.2134/jeq2012.0151 (2012)Google Scholar
  57. 57.
    IBI: International Biochar Initiative. (2015)
  58. 58.
    Beesley, L., Marmiroli, M., Pagano, L., Pigoni, V., Fellet, G., Fresno, T., Vamerali, T., Bandiera, M., Marmiroli, N.: Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ. 454, 598–603 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Rubén Forján
    • 1
    Email author
  • Alfonso Rodríguez-Vila
    • 1
  • Emma F. Covelo
    • 1
  1. 1.Department of Plant Biology and Soil Science, Faculty of BiologyUniversity of VigoVigo, PontevedraSpain

Personalised recommendations