Waste and Biomass Valorization

, Volume 10, Issue 1, pp 187–195 | Cite as

Bio-Oil Production in Fluidized Bed Reactor at Pilot Plant from Sugarcane Bagasse by Catalytic Fast Pyrolysis

  • Jessi Osorio
  • Farid ChejneEmail author
Original Paper


Fast pyrolysis of biomass produces a liquid with a diverse spectrum of compounds. This work describes impact of adding calcium oxide as a catalyst for fast catalytic pyrolysis of sugarcane bagasse in a fluidized bed reactor at pilot plant scale. The product distributions, bio-oil physical characteristics, and elemental analysis of products were determined. Rapid aging tests were performed on the oils at 80 °C to evaluate the impact of the catalyst on long term storage properties. Results showed that the presence of the catalyst (10 wt% loading) reduced the bio-oil oxygen content by 14%. The catalyst decreased the total bio-oil yield by 17 wt%, but reduced the water content in that oil and increased the gas yield. The presence of the catalyst did not affect the char yield. Over 150 compounds were identified by GC/MS and the distribution of the main functional groups was analyzed.


Catalytic fast pyrolysis Biomass Bio-oil aging Lime 



The authors are grateful to National University of Colombia (DIME) and Colciencias for providing financial and logistical support to do this research. Special thanks to Brennan Pecha for invaluable comments to this paper.


  1. 1.
    Montoya, J.I., Chejne, F., Castillo, M.E.F., Acero, R.J.R., Gómez, C.A., Sarmiento, J.A., et al.: Pirólisis Rápida de Biomasa. Universidad Nacional de Colombia, sede Medellín (2013)Google Scholar
  2. 2.
    UPME, UIS, Colciencias, IDEAM: Atlas del Potencial Energético de la Biomasa Residual en Colombia. Unidad de Planeación Minero Energética, Bogotá (2011)Google Scholar
  3. 3.
    UPME: Ministerio de Minas y Energìa. Energias Renovables: Descripciòn, tecnologías y usos finales Accessed Dec 2015
  4. 4.
    European Commission. Official Journal of the European Union 2007.
  5. 5.
    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 38, 68–94 (2012). doi: 10.1016/j.biombioe.2011.01.048 CrossRefGoogle Scholar
  6. 6.
    Kalgo, A.S.: The Develpoment and Optimisation of a Fast Pyrolysis Process for Bio-Oil Production. Aston University, Birmingham (2011)Google Scholar
  7. 7.
    Bridgwater, A., Hofbauer, H., Van-Loo, S.: Thermal Biomass Conversion. CPL Press, Newbury (2009)Google Scholar
  8. 8.
    Akhtar, J., Saidina Amin, N.: A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev. 16, 5101–5109 (2012). doi: 10.1016/j.rser.2012.05.033 CrossRefGoogle Scholar
  9. 9.
    Zhang, H., Xiao, R., Huang, H., Xiao, G.: Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour. Technol. 100, 1428–1434 (2009). doi: 10.1016/j.biortech.2008.08.031 CrossRefGoogle Scholar
  10. 10.
    Mihalcik, D.J., Mullen C.A., Boateng A.A.: Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J. Anal. Appl. Pyrolysis. 92, 224–232 (2011). doi: 10.1016/j.jaap.2011.06.001 CrossRefGoogle Scholar
  11. 11.
    Spens, O.: The role of alkali and earth alkaline metals as intrinsic catalysts in the fast pyrolysis of hemicellulose. Universiteit Gent (2015).
  12. 12.
    Goldberg, N.M., Dallmer, M.F., Boateng, A.A., Mullen, C.A., Mihalcik, D.J.: Fast Pyrolysis Catalytic Cracking Pipe for Producing Bio-oils (2012). Patent. US9023181 B2Google Scholar
  13. 13.
    Carlson, T.R., Vispute, T.P., Huber, G.W.: Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem 1, 397–400 (2008). doi: 10.1002/cssc.200800018 CrossRefGoogle Scholar
  14. 14.
    Atadana, F.W., Barone, J.R., Aning, A.O.: Catalytic Pyrolysis of Celullose, Hemicellulose and Lignin Model Compounds. Virginia Polytechnic Institute and State University, Blacksbury (2010)Google Scholar
  15. 15.
    Lu, Q., Zhang, Z.-F., Dong, C.-Q., Zhu, X.-F.: Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies 3, 1805–1820 (2010). doi: 10.3390/en3111805 CrossRefGoogle Scholar
  16. 16.
    Mullen, C.A., Boateng, A.A., Mihalcik, D.J., Goldberg, N.M.: Catalytic fast pyrolysis of white oak wood in a bubbling fluidized bed. Energy & Fuels 25, 5444–54521 (2011)CrossRefGoogle Scholar
  17. 17.
    Wang, D., Xiao, R., Zhang, H., He, G.: Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA–FTIR analysis. J. Anal. Appl. Pyrolysis 89, 171–177 (2010). doi: 10.1016/j.jaap.2010.07.008 CrossRefGoogle Scholar
  18. 18.
    Lin, Y., Zhang, C., Zhang, M., Zhang, J.: Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy & Fuels 24, 5686–5695 (2010)CrossRefGoogle Scholar
  19. 19.
    Beaumont, O., Schwob, Y.: Influence of physical and chemical parameters on wood pyrolysis. Ind. Eng. Chem. Process Des. Dev. 23, 637–641 (1984)CrossRefGoogle Scholar
  20. 20.
    Lin, Y.-C., Cho, J., Tompsett, G.A., Westmoreland, P.R., Huber, G.W.: Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C 113, 20097–20107 (2009). doi: 10.1021/jp906702p CrossRefGoogle Scholar
  21. 21.
    Williams, P.T., Nugranad, N.: Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy. 25, 493–513 (2000)CrossRefGoogle Scholar
  22. 22.
    Montoya, J.I., Valdés, C., Chejne, F., Gómez, C.A., Blanco, A., Marrugo, G., et al.: Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: an experimental study. J. Anal. Appl. Pyrolysis. 112, 379–387 (2014). doi: 10.1016/j.jaap.2014.11.007 CrossRefGoogle Scholar
  23. 23.
    Oasmaa, A., Meier, D.: Norms and standards for fast pyrolysis liquids. J. Anal. Appl. Pyrolysis. 73, 323–334 (2005). doi: 10.1016/j.jaap.2005.03.003 CrossRefGoogle Scholar
  24. 24.
    Garcia-Perez, M., Chaala, A., Pakdel, H., Kretschmer, D., Roy, C.: Characterization of bio-oils in chemical families. Biomass Bioenergy. 31, 222–242 (2007). doi: 10.1016/j.biombioe.2006.02.006 CrossRefGoogle Scholar
  25. 25.
    Oasmaa, A., Kuoppala, E.: Solvent fractionation method with brix for rapid characterization of wood fast pyrolysis liquids. Energy & Fuels. 22, 4245–4248 (2008). doi: 10.1021/ef800407d CrossRefGoogle Scholar
  26. 26.
    Oasmaa A., Peacocke C.: Properties and Fuel Use of Biomass-Derived Fast Pyrolysis Liquids. A Guide. VTT Publications, Finland (2010)Google Scholar
  27. 27.
    Sipilä, K., Kuoppala, E., Fagernäs, L., Oasmaa, A.: Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy. 14, 103–113 (1998)CrossRefGoogle Scholar
  28. 28.
    Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K.G., Jensen, A.D.: A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407, 1–19 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhang, L., Liu, R., Yin, R., Mei, Y.: Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev. 24, 66–72 (2013). doi: 10.1016/j.rser.2013.03.027 CrossRefGoogle Scholar
  30. 30.
    Smith, M.B., March, J.: March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure: Sixth Edition. vol. 9780471720, Wiley, Hoboken (2006)Google Scholar
  31. 31.
    Oasmaa, A., Peacocke, C.: A Guide to Physical Property Characterization of Biomass-Derived Fast Pyrolysis Liquids. Technical Research Centre of Finland, Espoo (2001)Google Scholar
  32. 32.
    Reumerman, P.: BTG’s technologie voor pyrolyse van biomassa. Uitnodiging Symp. Dag van Biomassa uit Nat. en Landsch., Dronten: BioBased Economy (2013).

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Termodinámica aplicada y energías alternativas, Facultad de MinasUniversidad Nacional de Colombiasede MedellínColombia
  2. 2.Escuela de Procesos y EnergíaUniversidad Nacional de Colombiasede MedellínColombia

Personalised recommendations