Advertisement

Stochastic resonance in a monostable system driven by time-delayed feedback

  • 13 Accesses

Abstract

The characteristic of a monostable stochastic resonance system driven by time-delayed feedback is investigated. Under the small-delay approximation theory, the effective potential function of the system is obtained and the influence of system parameters on the shape of the potential function is also discussed. Furthermore, we consider the influence of the input signal on the system and derive the asymmetric bistable potential function. By using the adiabatic approximation theory and the two-state theory, the theoretical expressions of the steady-state probability distribution function, mean first-passage time and signal-to-noise ratio are obtained, which are three excellent metrics to measure the performance of system. Simulation results show that the parameters A, a and τ can motivate the SR phenomenon while β suppresses the SR phenomenon. At last, the numerical simulation results obtained from the original Langevin equation and the effective Langevin equation can verify whether the theoretical derivation is correct.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. [1]

    N Yeung, M M Botvinick and J D Cohen Psychol Rev. 111 931 (2004)

  2. [2]

    B M Grafov and I B Grafova Electrochem Commun. 2 386 (2000)

  3. [3]

    M Blanco-Velasco, B Weng and K E Barner Comput Biol Med. 38 1 (2008)

  4. [4]

    Y S Fan and G T Zheng Mech Syst Signal Pr.21 678 (2013)

  5. [5]

    V N Hari, G V Anand and A B Premkumar Digit Signal Process. 23 1645 (2013)

  6. [6]

    K Wiesenfeld, D Pierson, E Pantazelou and C Dames Phys Rev Lett.72 2125 (1994)

  7. [7]

    C Z Feng and W L Duan Indian J. Phys.88 107 (2014)

  8. [8]

    M Sahoo and A M Jayannavar Indian J. Phys.84 1421(2010)

  9. [9]

    P W Miller, L W McGowan, U Bergmann and D Farrell Med Hypotheses. 121 106(2018)

  10. [10]

    V Ravichandran, V Chinnathambi and S Rajasekar Indian J. Phys.83 1593 (2009)

  11. [11]

    S L Lu, Q B He and J Wang Mech Syst Signal Pr. 116 230 (2019)

  12. [12]

    S L Lu, Q B He and J W Zhao Mech Syst Signal Pr. 113 36 (2018)

  13. [13]

    P Zandiyeh, J C Kupper, N G H Mohtadi and P Goldsmith G Biomech. 84 52(2019)

  14. [14]

    O White, J Babic, C Trenado and L Johannsen Front Physiol. 9 1865(2019)

  15. [15]

    S L Lu, R Q Yan and Y B Liu IEEE T Instrum Meas. 28 2135(2019)

  16. [16]

    N V Agudov, A V Krichigin, D Valenti and B Spagnolo Phys Rev E. 81 051123 (2010)

  17. [17]

    R Y Chen and L R Nie Indian J. Phys.91 973 (2017)

  18. [18]

    H Q Zhang, Y Xu, W Xu and X C Li Chaos. 22 043130 (2012)

  19. [19]

    D C Mei, G Z Xie, L Y Cao and D J Wu Phys Rev E. 59 3880 (1999)

  20. [20]

    I G Silva, O A Rosso, M V D Vermelho and M L Lyra Commun Nonlinear Sci. 22 641(2015)

  21. [21]

    W L Reenbohn, S S Pohlong and M C Mahato Phys Rev E. 85 031144 (2012)

  22. [22]

    X M Lv Indian J. Phys.87 903 (2013)

  23. [23]

    I Bacic, V Klinshov, V Nekorkin and M Perc EPL-Europhys Let. 124 40004(2018)

  24. [24]

    G Hu, C Min and Y Tian Acta Phys Pol A. 45 29 (2014)

  25. [25]

    B Aragie Int G Mod Phys B. 28 1550011 (2014)

  26. [26]

    B Zhou and D Lin Indian J. Phys.91 299 (2017)

  27. [27]

    J Liu and Y G Wang Physica A. 493 359(2018)

  28. [28]

    P M Shi, W Y Zhang, D Z Yuan and H F Xia Chaos Soliton Fract. 113 365(2018)

  29. [29]

    P M Shi, Y F Jin and S M Xiao Chaos. 27 113109(2017)

  30. [30]

    P M Shi, D Z Yuan and D Y Han G Sound Vib. 424 1(2018)

  31. [31]

    W Guo and C Dong Physica A. 416 90(2014)

  32. [32]

    O L Han, T Yang and C H Zeng Physica A. 408 96(2014)

  33. [33]

    K K Wang, L Ju and Y J Wang Chaos Soliton Fract. 108 166(2018)

  34. [34]

    K K Wang, Y J Wang, H Ye and S H Li Int J Biomath. 12 1950048(2019)

  35. [35]

    R F Liu, W J Ma and J K Zeng Physica A. 517 562(2019)

  36. [36]

    G Hu, G Nicolis and C Nicolis Phys Rev A. 42 2030 (1990)

  37. [37]

    J Li and J Zhang G Sound Vib. 401 139 (2017)

  38. [38]

    G Steve, L H Ivan and L André Phys Rev E. 59 3970 (1999)

  39. [39]

    C P Jesús, G O Jose and M Manuel Phys Rev Let. 91 210601 (2003)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61771085, 61671095, 61371164) and the Project of Key Laboratory of Signal and Information Processing of Chongqing (No. CSTC2009CA2003).

Author information

Correspondence to Lin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhou, L. & Zhang, T. Stochastic resonance in a monostable system driven by time-delayed feedback. Indian J Phys (2020) doi:10.1007/s12648-019-01676-4

Download citation

Keywords

  • Stochastic resonance
  • Time-delayed feedback
  • Classical monostable system

PACS Nos

  • 05.40.-a
  • 02.50.-r