Advertisement

Relativistic and nonrelativistic treatment of Hulthen–Kratzer potential model in D-dimensions

  • J. A. ObuEmail author
  • P. O. Okoi
  • U. S. Okorie
Original Paper
  • 25 Downloads

Abstract

We present approximate solutions of the Klein–Gordon equation containing an interaction of the Hulthen and modified Kratzer potential using the procedure of Nikiforov–Uvarov and the Greene–Aldrich approximation method of handling centrifugal barriers. In our results, we obtained the bound-state relativistic energy eigenvalues and their corresponding eigenfunctions in terms of the Jacobi polynomials. We then showed that in the nonrelativistic limit, the energy eigenvalues reduces to the one obtained using the Schrodinger equation. Furthermore, to get a better insight into the behaviour of diatomic molecular systems, we investigated the behaviour of some selected diatomic molecules, namely N2, I2, CO, NO and HCl, when subjected to the potentials under study. This was done by determining the shape of the potential of the molecules when the interatomic distance r equals the equilibrium bond length re. Also, the energy spectrum was computed for the selected diatomic molecules for various vibrational and rotational quantum numbers. Special cases of the potential and their corresponding energies were deduced and were found to be in agreement with the literature. Finally, we present the variations of the energy eigenvalues with the potential strength, equilibrium bond length, dissociation energy, screening parameter, dimensions, vibrational and rotational quantum numbers, respectively.

Keywords

Hulthen potential Kratzer potential Klein–Gordon equation Jacobi polynomials Nikiforov–Uvarov method 

PACS Nos.

03.65.Ge 03.65.Pm 03.65.Nk 

Notes

References

  1. [1]
    A Svidzinsky, G Chen, S Chin, M Kim, D Ma, R Murawski, A Sergeev, M Scully and D Herschbach Int. Rev. Phys. Chem.27 665 (2008)CrossRefGoogle Scholar
  2. [2]
    O A Awoga, A N Ikot, I O Akpan and A D Antia Indian J. Pure Appl. Phys.50 217 (2012)Google Scholar
  3. [3]
    P K Bera Pramana J. Phys.78 91 (2012)Google Scholar
  4. [4]
    C Pekeris Phys. Rev. 45 98 (1934)Google Scholar
  5. [5]
    R L Greene and A Aldrich Phys. Rev. A14 2363 (1976)CrossRefADSGoogle Scholar
  6. [6]
    B J Falaye, K J Oyewumi, T T Ibrahim, M A Punyasena and C A Onate Can. J. Phys.91 98 (2013)CrossRefADSGoogle Scholar
  7. [7]
    M F Manning and N Rosen Phys. Rev. 44 953 (1933)Google Scholar
  8. [8]
    F Taskin Int. J. Theor. Phys. 48 1142 (2009)Google Scholar
  9. [9]
    G. Poschl and E Teller Z. Phys. 83 143 (1933)Google Scholar
  10. [10]
    C Eckart Phys. Rev. 35 1303 (1930)Google Scholar
  11. [11]
    G F Wei, S H Dong and V B Bezerra Int. J. Mod. Phys. A24 161 (2009)CrossRefADSGoogle Scholar
  12. [12]
    A D Alhaidari Found. Phys. 40 1088 (2010)Google Scholar
  13. [13]
    R D Woods and D S Saxon Phys. Rev. 92 577 (1954)CrossRefADSGoogle Scholar
  14. [14]
    D Agboola Acta Phys. Pol. A120 3 (2011)Google Scholar
  15. [15]
    P M Morse Phys. Rev. 34 57 (1929)Google Scholar
  16. [16]
    A N Ikot, O A Awoga, A D Antia, H Hassanabadi, and E Maghsoodi Few Body Syst.54 2041 (2013)Google Scholar
  17. [17]
    S M Ikhadir and R Sever Cent. Eur. J. Phys.6 685 (2008)Google Scholar
  18. [18]
    H Ciftci, R L Hall and N Saad J. Phys. A Math. Gen. 36 11807 (2003)CrossRefADSGoogle Scholar
  19. [19]
    S H Dong Factorization Method in Quantum Mechanics (Armsterdam: Springer) (2007)Google Scholar
  20. [20]
    J Sadeghi Acta Phys. Pol. A112 23 (2007)Google Scholar
  21. [21]
    J Y Liu, G D Zhang and C S Jia Phys. Lett. A377 1444 (2013)MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    U S Okorie, E E Ibekwe, M C Onyeaju and A N Ikot Eur. Phys. J. Plus133 433 (2018)CrossRefGoogle Scholar
  23. [23]
    U S Okorie, A N Ikot, M C Onyeaju and E O Chukwuocha J. Mol. Mod.24 289 (2018)CrossRefGoogle Scholar
  24. [24]
    Z Q Ma and B W Xu Eur. Phys. Lett.69 685 (2005)CrossRefADSGoogle Scholar
  25. [25]
    S H Dong, D Morales and J Garcia-Ravelo Int. J. Mod. Phys. E16 189 (2007)CrossRefADSGoogle Scholar
  26. [26]
    E Witten Nucl. Phys. B188 513 (1981)Google Scholar
  27. [27]
    A N Ikot, B H Yazarloo, E Maghsoodi, S Zarrinkamar and H Hassanabadi J. Assoc. Arab Univ. Basic Appl. Sci.18 46 (2015)Google Scholar
  28. [28]
    A F Nikiforov and V B Uvarov Special Functions of Mathematical Physics (Basel: Birkhauser Verlag) (ed.) A Jaffe, p 317 (1988)Google Scholar
  29. [29]
    A N Ikot, A D Antia, L E Akpabio and J A Obu J. Vectorial Relativ.6 65 (2011)Google Scholar
  30. [30]
    A N Ikot, O A Awoga and A D Antia Chin. Phys. B22, 020304 (2013)CrossRefGoogle Scholar
  31. [31]
    B I Ita, H Louis, O U Akakuru, T O Magu, I Joseph, P Tchoua, P I Amos, I Effiong and N A Nzeata J. Quant. Inf. Sci.8 24 (2018)Google Scholar
  32. [32]
    B J Falaye, S M Ikhadair, M Hamzavi Few Body Syst.4 0937 (2014)Google Scholar
  33. [33]
    O Klein Z. Phys. 37 895 (1926)Google Scholar
  34. [34]
    P Alberto, A S de Castro and M Malheiro Phys. Rev. C75 047303 (2007)CrossRefADSGoogle Scholar
  35. [35]
    A D Alhaidari, H Bahlouli and A Al-Hasan Phys. Lett. A349 87 (2006)MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    A D Alhaidari Phys. Lett. B699 309 (2011)Google Scholar
  37. [37]
    C S Jia, J W Dai, L H Zhang, J Y Liu and G D Zhang Chem. Phys. Lett.619 54 (2015)CrossRefADSGoogle Scholar
  38. [38]
    X J Xie and C S Jia Phys. Scr.90 035207 (2015)CrossRefADSGoogle Scholar
  39. [39]
    H B Liu, L Y Yi and C S Jia J. Math. Chem.56 2982 (2018)MathSciNetCrossRefGoogle Scholar
  40. [40]
    C Chen Phys. Scr.69 257 (2004)Google Scholar
  41. [41]
    O Bayrak, G Kocak and I Boztosun J. Phys. A Math. Theor.39 11521 (2006)ADSGoogle Scholar
  42. [42]
    W C Qiang, Y Gao and R S Zhou Cent. Eur. J. Phys. 6(2) 356 (2208)Google Scholar
  43. [43]
    A D Antia and O P Akpan J. Appl. Comput. Math.6 54 (2017)Google Scholar
  44. [44]
    O. Bayrak, I. Boztosun Phys. Scr.76 92 (2007)MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    M C Onyeaju, J O A Idiodi, A N Ikot, M Solaimani and H Hassanabadi Few-Body Syst.59 793 (2016)CrossRefADSGoogle Scholar
  46. [46]
    M Hosseinpour, F M Andrade, E O Silva and H Hassanabadi Eur. Phys. J. C77 270 (2017)CrossRefADSGoogle Scholar
  47. [47]
    O Bayrak, I Boztosun and H Cifti Int. J. Quant. Chem.107 540 (2007)CrossRefADSGoogle Scholar
  48. [48]
    C Berkdemir, A Berkdemir and J. Han Chem. Phys. Lett.417 326 (2006)CrossRefADSGoogle Scholar
  49. [49]
    F Hoseini, J K Saha and H Hassanabadi Commun. Theor. Phys.65 695 (2016)CrossRefADSGoogle Scholar
  50. [50]
    S A Najafizade, H Hassanabadi and S Zarrinkamar Chin. Phys. B25 040301 (2016)CrossRefGoogle Scholar
  51. [51]
    C A Onate, O Ebomwonyi, K O Dopamu, J O Okoro and M O Oluwayemi Chin. J. Phys. 56 2538 (2018)CrossRefGoogle Scholar
  52. [52]
    C O Edet, U S Okorie, A T Ngiangia and A N Ikot Indian J. Phys. (2019).  https://doi.org/10.1007/s12648-019-01477-9
  53. [53]
    C O Edet, K O Okorie, H Louis and N A Nzeata-Ibe Indian J. Phys. (2019).  https://doi.org/10.1007/s12648-019-01467-x
  54. [54]
    S H Dong Wave Equation in Higher Dimensions (Berlin: Springer) (2011)Google Scholar
  55. [55]
    A D Alhaidari, H Bahlouli and A Al-Hasan Phys. Lett. A349 87 (2006)MathSciNetCrossRefADSGoogle Scholar
  56. [56]
    M Abramowitz and I A Stegun Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (New York: Dover) (1964)zbMATHGoogle Scholar
  57. [57]
    K J Oyewumi and K D Sen J. Math. Chem. 50 1039 (2012)MathSciNetCrossRefGoogle Scholar
  58. [58]
    S M Ikhdair and B J Falaye Chem. Phys. 421 84 (2013)CrossRefGoogle Scholar
  59. [59]
    O J Oluwadare and K J Oyewumi Eur. Phys. J. Plus133 422 (2018)CrossRefGoogle Scholar
  60. [60]
    C S Jia, C W Wang, L H Zhang, X L Peng, R Zeng and X T You Chem. Phys. Lett.676 150 (2017)CrossRefADSGoogle Scholar
  61. [61]
    C S Jia, C W Wang, L H Zhang, X L Peng, H M Tang and R Zeng, Chem. Eng. Sci.183 26 (2018)CrossRefGoogle Scholar
  62. [62]
    C S Jia, R Zeng, X L Peng, L H Zhang and Y L Zhao Chem. Eng. Sci.190 1 (2018)CrossRefGoogle Scholar
  63. [63]
    X L Peng, R Jiang, C S Jia, L H Zhang and Y L Zhao Chem. Eng. Sci.190 122 (2018)CrossRefGoogle Scholar
  64. [64]
    C S Jia, C W Wang, L H Zhang, X L Peng, H M Tang, J Y Liu, Y Xiong and R Zeng Chem. Phys. Lett.692 57 (2018)CrossRefADSGoogle Scholar
  65. [65]
    R Jiang, C S Jia, Y Q Wang, X L Peng and L H Zhang Chem. Phys. Lett.715 186 (2019)CrossRefADSGoogle Scholar
  66. [66]
    C S Jia, L H Zhang, X L Peng, J X Luo, Y L Zhao, J Y Liu, J J Guo and L D Tang Chem. Eng. Sci.202 70 (2019)CrossRefGoogle Scholar
  67. [67]
    A N Ikot, U S Okorie, R Sever and G J Rampho Eur. Phys. J. Plus134 386 (2019)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Theoretical Physics Group, Department of PhysicsUniversity of CalabarCalabarNigeria
  2. 2.Department of PhysicsAkwa Ibom State UniversityIkot Akpaden, Mkpat EninNigeria

Personalised recommendations