Modelling of high-efficiency substrate CIGS solar cells with ultra-thin absorber layer

  • A. S. Mohamed
  • H. A. MohamedEmail author
Original Paper


Solar cells based on Cu(In,Ga)Se2 (CIGS) are very promising thin-film solar cells due to their high absorption coefficient and appropriate optical band gap. In this work, a model of substrate thin-film solar cell of structure ZnO:Al/CdS/CIGS/Mo/glass has been established to estimate the cell parameter of ultra-thin absorber layer. The quantitative assessment of the optical losses due to reflection at interfaces and absorption in window layer (ZnO:Al) and buffer layer (CdS) as well as the recombination losses at front and rear surface of CIGS layer has been studied. The optical losses are carried out based on the optical constants of the used materials, and the recombination losses are carried out in terms of the parameters of the absorber layer. The effect of antireflection coating and reflectivity from metal electrode on the short-circuit current density and hence on the cell efficiency has been studied. It has been shown that the optical losses can prevent 30% of the incident photons from reaching the absorber layer at 150 nm thickness for each of the ZnO:Al and CdS layers. The antireflection coating of 100 nm thickness is capable of increasing JSC by 8%. High efficiency of 19.56% has been obtained at 1 µm thickness of CIGS layer under certain parameters of the used materials, and this efficiency can reach 20.22% at 100% reflectivity from the back contact.


CIGS solar cell Optical loss Recombination loss Efficiency 


72.40.+w 78.20.−e 78.20.Bh 78.20.Ci 84.60.Jt 



This project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Center.


  1. [1]
    H Movla Optik124 5871 (2013)ADSCrossRefGoogle Scholar
  2. [2]
    T Wada, Y Hashimoto, S Nishiwaki, T. Satoh, S Hayashi, T Negami and H. Miyake Sol. Energy Mater. Sol. Cells67 305(2001)CrossRefGoogle Scholar
  3. [3]
    H Heriche, Z Rouabah and N Bouarissa Int. J. Hydrogen Energ. 42 9524 (2017)CrossRefGoogle Scholar
  4. [4]
    T Nakada, Y Hirabayashi, T Tokado, D Ohmori and T Mise Sol. Energy77 739 (2004)ADSCrossRefGoogle Scholar
  5. [5]
    T Nakada Thin Solid Films480481 419 (2005)ADSCrossRefGoogle Scholar
  6. [6]
    6.M D Heinemann, V Efimova, R Klenk, B Hoepfner, M Wollgarten, T Unold, H-W Schock and C A Kaufmann Prog. Photovolt. Res. Appl.23 1228 (2015)CrossRefGoogle Scholar
  7. [7]
  8. [8]
    B Vermang, JT Wätjen, V Fjällström, F Rostvall, M Edoff, R Kotipalli, F Henry and D Flandre Prog. Photovolt Res. Appl.22 1023 (2014)CrossRefGoogle Scholar
  9. [9]
    N Amin, P Chelvanathan, H M Istiaque and K Sopian Energy Procedia15 291 (2012)CrossRefGoogle Scholar
  10. [10]
    H A Mohamed J. Appl. Phys.113 093105 (2013)ADSCrossRefGoogle Scholar
  11. [11]
    H A Mohamed, Thin Solid Films589 72 (2015)ADSCrossRefGoogle Scholar
  12. [12]
    H A Mohamed, A S Mohamed and H M Ali Mater. Res. Express5 056411 (2018)CrossRefGoogle Scholar
  13. [13]
    H A Mohamed Can. J. Phys.92 1350 (2014)ADSCrossRefGoogle Scholar
  14. [14]
    H A Mohamed Philos. Maga.94 3467 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    H A Mohamed Solar Energy108 360 (2014)ADSCrossRefGoogle Scholar
  16. [16]
    S Lee and K Price J Park Thin Solid Films619 208 (2016)ADSCrossRefGoogle Scholar
  17. [17]
    O A Dobrozhan, P S Danylchenko, A I Novgorodtsev and A S Opanasyuk J. Nanoelectron. Optoe.12 1 (2017)CrossRefGoogle Scholar
  18. [18]
    L A Kosyachenko, X Mathew, P D. Paulson, V Ya Lytvynenko and O L Maslyanchuk Sol. Energy Mater. Sol. Cells130 291 (2014)CrossRefGoogle Scholar
  19. [19]
    J Liu, M Zhang and X Feng Optik172 1172 (2018)ADSCrossRefGoogle Scholar
  20. [20]
    Q Xu, R D Hong, H L Huang, Z F Zhang, M K Zhang, X P Chen and Z Y Wu Opt. Laser Technol.45 513 (2013)ADSCrossRefGoogle Scholar
  21. [21]
    S Ninomiya and S Adachi J. Appl. Phys.78 1183 (1995)ADSCrossRefGoogle Scholar
  22. [22]
    M Born and E Wolf Principles of Optics, 7th ed. (Cambridge: Cambridge University Press) p 65 (1999)CrossRefGoogle Scholar
  23. [23]
    L Kosyachenko and T Toyama Sol. Energy Mater. Sol. Cells120 512(2014)CrossRefGoogle Scholar
  24. [24]
    L A Kosyachenko Semiconductors40 710 (2006)ADSCrossRefGoogle Scholar
  25. [25]
    S M Sze and K K Ng Physics of Semiconductor Devices (New Jersey: Wiley-Interscience) p 723 (2006)CrossRefGoogle Scholar
  26. [26]
    L A Kosyachenko, E V Grushko and T I Mykytyuk Semiconductors46 466 (2012)ADSCrossRefGoogle Scholar
  27. [27]
    W Wang, M T Winkler, O Gunawan, T Gokmen, T K Todorov, Y Zhu and D B Mitzi Adv. Energy Mater.4 1301465 (2014)CrossRefGoogle Scholar
  28. [28]
    L A Kosyachenko, EV. Grushko and VV Motushchuk Sol. Energy Mater. Sol. Cells90 2201 (2006)CrossRefGoogle Scholar
  29. [29]
    P Xiao, Z Ming, Z Daming, S Rujun, Z Leng, W Yaowei, L Xunyan, W Yixuan and R Guoan Appl. Surf. Sci.442 308 (2018)CrossRefGoogle Scholar
  30. [30]
    H Li, F Qu, H Luo, X Niu, J Chen, Y Zhang, H Yao, X Jia, H Gu and W Wang Results Phys.12 704 (2019) ADSCrossRefGoogle Scholar
  31. [31]
    S T Kim, K Kim, J H Yun and B T Ahn Curr. Appl. Phys.18 912(2018)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Physics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Physics Department, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt
  3. 3.Physics Department, Faculty of ScienceSohag UniversitySohâgEgypt

Personalised recommendations