A study of important solutions in Chern–Simons modified gravity
- 13 Downloads
Abstract
In this manuscript, we have presented the compatible solutions under the framework of dynamical and non-dynamical Chern–Simons modified gravity. By taking an open choice of external field as a function of angular parameter \(\theta \), we obtained Gödel-type solutions of non-dynamical Chern–Simons modified gravity. It is mentioned that a vacuum Gödel-type solution exists in this theory. Non-static spherical symmetric solutions are also described for dynamical Chern–Simons modified gravity by considering external field as a function of radial parameter r. Later, results are similar to those of well-known Tolman–Bondi solutions found in the context of general relativity. It is observed that in case of \(\varLambda \rightarrow \kappa p_{0}\) both parameters A(t, r) and B(t, r) turned to be undefined.
Keywords
Chern–Simons modified gravity Gödel-type metric Spherical symmetric metricPACS Nos.
95.30.Sf 97.60.Lf 04.20.qNotes
References
- [1]A G Riess, A V Filippenko, P Challis, A Clocchiatti, A Diercks, P M Garnavich, R L Gilliland, C J Hogan, S Jha, R P Kirshner, B Leibundgut, M M Phillips, D Reiss, B P Schmidt, R A Schommer, R C Smith, J Spyromilio, C Stubbs, B S Nicholas and J Tonry Astron. J. 116 1009 (1998)ADSCrossRefGoogle Scholar
- [2]R Jackiw and S Y Pi Phys. Rev. Lett.83 1506 (1999). 104012 (2003)Google Scholar
- [3]S Alexander and N Yunes Phys. Rev.D75 124022 (2007)ADSMathSciNetCrossRefGoogle Scholar
- [4]A Lue, L Wang and M Kamionkowski Phys. Rev. Lett.83 1506 (1999)ADSCrossRefGoogle Scholar
- [5]S Alexander Phys. Lett.B660 444 (2008)ADSCrossRefGoogle Scholar
- [6]C Furtado, J R Nascimento, A Yu Petrov and A F Santos Phys. Lett.B693 494 (2010)ADSCrossRefGoogle Scholar
- [7]C Furtado, T Mariz, J R Nascimento, A Y Petrov, and A F Santos Int. J. Mod. Phys. Conf. Ser.18 145 (2012)CrossRefGoogle Scholar
- [8]D Grumiller and N Yunes Phys. Rev.D77 044015 (2008)ADSMathSciNetCrossRefGoogle Scholar
- [9]C Furtado, T Mariz, J R Nascimento, A Y Petrov and A F Santos Phys. Rev. D79 124039 (2009)ADSGoogle Scholar
- [10]H Ahmedov and A N Aliev Phys. Rev.D82 024043 (2010)ADSMathSciNetCrossRefGoogle Scholar
- [11]N Yunes and F Pretorius Phys. Rev.D79 084043 (2009)ADSCrossRefGoogle Scholar
- [12]D Guarrera and A J Hariton Phys. Rev.D76 044011 (2007)ADSMathSciNetCrossRefGoogle Scholar
- [13]Y S Myung and T Moon JCAP10 043 (2014)ADSCrossRefGoogle Scholar
- [14]L E Qianga and P Xu Eur. Phys. J. C75 390 (2015)ADSCrossRefGoogle Scholar
- [15]M Sharif Int. J. Mod. Phys.D13 1019 (2004)ADSCrossRefGoogle Scholar
- [16]S Hawking Phys. Rev.D46 603 (1992)ADSMathSciNetCrossRefGoogle Scholar
- [17]K A Bronnikov and V N Melnikov Gen. Relat. Grav.27 465 (1995)ADSCrossRefGoogle Scholar
- [18]J T Jebsen Gen. Relat. Grav.37 2253 (2005)ADSMathSciNetCrossRefGoogle Scholar
- [19]R M Wald General Relativity (Chicago: The University of Chicago Press) (1984)Google Scholar
- [20]D M Eardley and Smarr L Phys. Rev.D19 2239 (1979)ADSGoogle Scholar
- [21]K Lake Phys. Rev.D62 027301 (2000)Google Scholar
- [22]M Sharif and Z Ahmad Mod. Phys. Lett.A22 1493 (2007)ADSCrossRefGoogle Scholar
- [23]M Sharif and Z Ahmad Mod. Phys. Lett.A22 2947 (2007)ADSCrossRefGoogle Scholar
- [24]M Sharif and Z Ahmad J. Korean Phys. Soc.52 980 (2008)ADSCrossRefGoogle Scholar
- [25]M Sharif and Z Ahmad Acta Phys. Pol.B39 1337 (2008)ADSGoogle Scholar
- [26]M Sharif and K Iqbal Mod. Phys. Lett.A24 1533 (2009)ADSCrossRefGoogle Scholar
- [27]K Kohkichi, M Toyoki and T Satoshi Prog. Theor. Phys.2 122 (2009)Google Scholar