Advertisement

Optical and electrical properties of a-AgSbS1.5Se0.5 chalcogenide thin films

  • Y. A. El-GendyEmail author
Original Paper
  • 5 Downloads

Abstract

AgSbS1.5Se0.5 films were deposited by e-beam evaporation technique onto clean glass substrates. The structural characterization of the deposited film was conducted using X-ray and transmission electron microscope techniques. The atomic percent of the constituent elements of the deposited films was investigated using energy dispersive X-ray spectrometry. The effect of thermal annealing on the structural and the optical properties of the deposited films has been studied. The transmission and reflection spectra of the deposited film were recorded in the wavelength range of 550–2500 nm. The refractive index, film thickness, and the optical absorption coefficient of the deposited film were successfully determined from the transmission spectrum employed the Swanepoel method. The dispersion of the refractive index was discussed in terms of Wemple–DiDomenico single oscillator model. Analysis of the optical absorption coefficient revealed a non-direct optical transition, where the optical band gap energy was calculated. Hot probe test revealed that the deposited films showed p-type conduction. The electrical properties of the deposited film have been studied during heating/cooling cycles in the temperature range 303–525 K, where the activation energy of the conduction was determined. p-AgSbS1.5Se0.5/n-CdS/ITO heterojunction solar cell fabricated in circular shape has been studied and the cell efficiency was evaluated.

Keywords

Thin films Chalcogenide Structure properties Optical properties Electrical properties 

PACS Nos.

73.50.Gr 78.66.Bz 73.61.Ph 

Notes

References

  1. [1]
    A Wangperawong, J S King, S M Herron, B P Tran, K Pangan Okimoto and S F Bent Thin Solid Films 519 2488 (2011)ADSCrossRefGoogle Scholar
  2. [2]
    K Tanaka, M Oonuki, N Moritake and H Uchiki Sol. Energy Mater. Sol.Cells 93 583 (2009)CrossRefGoogle Scholar
  3. [3]
    A Rabhi, M Kanzari and B Rezig Thin Solid Films 517 2477 (2009)ADSCrossRefGoogle Scholar
  4. [4]
    D Avellaneda, G Delgado, M T S Nair and P K Nair Thin Solid Films 515 5771 (2007)ADSCrossRefGoogle Scholar
  5. [5]
    M Bouaziz, M Amlouk and S Belgacem Thin Solid Films 517 2527 (2009)ADSCrossRefGoogle Scholar
  6. [6]
    J G Garza, S Shaji, A C Rodriguez, T K D Roy and B Krishnan Appl. Surf. Sci. 257 10834 (2011)ADSCrossRefGoogle Scholar
  7. [7]
    J O Gonzalez, S Shaji, D Avellaneda, A G Castillo, T K D Roy and B Krishnan Mater. Res. Bull 48 1939 (2013)CrossRefGoogle Scholar
  8. [8]
    J G Garza, S Shaji, A C Rodriguez, T K D Roy and B Krishnan Appl. Surf. Sci. 257 10834 (2011)ADSCrossRefGoogle Scholar
  9. [9]
    K Bindu, M T S Nair, T K Das Roy and P K Nair Electrochem. Solid State Lett. 9 195 (2006)CrossRefGoogle Scholar
  10. [10]
    O Gonzalez, S Shaji, D Avellaneda, A G Castillo, T K D Roy and B Krishnan Mater. Res. Bull. 48 1939 (2013)CrossRefGoogle Scholar
  11. [11]
    G Wang et al. Vacuum 86 1572 (2012)ADSCrossRefGoogle Scholar
  12. [12]
    R Detemple, D Wamwangi, G Bihlmayer and M Wuttig Appl. Phys. Lett. 83 2572 (2003)ADSCrossRefGoogle Scholar
  13. [13]
    M Hamam, Y A El-Gendy, M S Selim, N H Teleb and A M Salem Phys. Status Solidi C 7 861 (2010)Google Scholar
  14. [14]
    F. Liu et al. J. Electrochem. Soc. 160 578 (2013)CrossRefGoogle Scholar
  15. [15]
    J Kavinchan, S Thongtem, E Saksornchai and T Thongtem Chalcogenide Lett.12 325 (2015)Google Scholar
  16. [16]
    T Daniel, J Henry, K Mohanraj and G Sivakumar Mater. Chem. Phys. 181 415 (2016)CrossRefGoogle Scholar
  17. [17]
    A M A El-Barry Physica B 396 49 (2007)ADSCrossRefGoogle Scholar
  18. [18]
    M Abdel Rafea and A A M Farag Chalcogenide Lett. 5 27 (2008)Google Scholar
  19. [19]
    A M Salem, Y A El-Gendy, G B Sakr and W Z Soliman J. Phys. D: Appl. Phys. 41 7 (2008)CrossRefGoogle Scholar
  20. [20]
    R Naik, P P Sahoo, C Sripan and R Ganesan Opt. Mater. 62 211 (2016)ADSCrossRefGoogle Scholar
  21. [21]
    R Naik and R. Ganesan J. Non-Cryst. Solids 385 142 (2014)ADSCrossRefGoogle Scholar
  22. [22]
    R Swanepoel J. Phys. E: Sci. Instrum. 16 1214 (1983)ADSCrossRefGoogle Scholar
  23. [23]
    J C Manificier, J Gasiot and J P Fillard J. Phys. E: Sci. Instrum. 9 1002 (1976)ADSCrossRefGoogle Scholar
  24. [24]
    S H Wemple and M DiDomenico Phys. Rev. B 3 1338 (1971)ADSCrossRefGoogle Scholar
  25. [25]
    S H Wemple Phys. Rev. B. 7 3767 (1973)ADSCrossRefGoogle Scholar
  26. [26]
    K Tanaka Thin Solid Films 66 271 (1980)ADSCrossRefGoogle Scholar
  27. [27]
    A Zakery, A Zekak, P J S Ewen, C W Slinger and A E Owen J. Non-Cryst. Solids 114 109 (1989)ADSCrossRefGoogle Scholar
  28. [28]
    S R Elliott J. Non-Cryst. Solids 81 71 (1986)Google Scholar
  29. [29]
    J Tauc Amorphous and Liquid Semiconductors (New York: Plenum) (1979)Google Scholar
  30. [30]
    J O Gonzalez, S Shaji, D Avellaneda, G A Castillo, T K Das Roy and B Krishnan Appl. Phys. A116 2095 (2014).ADSCrossRefGoogle Scholar
  31. [31]
    A M Salem, Y A El Gendy and E A El-Sayad Physica B: Condens. Matter 204 2425 (2009)ADSCrossRefGoogle Scholar
  32. [32]
    D Gupta, S Mukhopadhyay and K S Narayan Sol. Energy Mater. Solar Cells 94 1309 (2010)CrossRefGoogle Scholar
  33. [33]
    Z S Elmandouh, H A Elmeleegi and Y A El-Gendy Appl. Sol. Energy 49 142 (2013)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceHelwan UniversityAin Helwan, CairoEgypt

Personalised recommendations