Advertisement

Effects of graphene content on resistive switching for Au/poly(methyl methacrylate): reduced graphene oxide/heavily doped p-type Si devices

  • Yow-Jon LinEmail author
  • Chang-Lin Wu
  • Zun-Yuan Ke
  • Hsing-Cheng Chang
Original Paper
  • 16 Downloads

Abstract

This study determines the effect of incorporating reduced graphene oxide (RGO) nanosheets into poly(methyl methacrylate) (PMMA) on the resistive switching (RS) mechanisms by measuring the current–voltage characteristics for Au/PMMA/heavily doped p-type Si (p+-Si) and Au/PMMA:RGO/p+-Si devices. The effect of RGO content on the RS properties is also determined. The Au/PMMA/p+-Si device exhibits set/reset–free current–voltage characteristics because of the insulating properties of PMMA. However, the Au/PMMA:RGO/p+-Si device exhibits RS behavior. Incorporating RGO into PMMA results in an increase in conductivity, the formation of PMMA–RGO interfaces and a significant increase in the trap density at the PMMA/RGO interfaces, so the RS performance is improved for Au/PMMA:RGO/p+-Si devices. It is shown that the current density for Au/PMMA:RGO/p+-Si devices is limited by the combined effect of ohmic conduction, space-charge-limited current conduction and trap-filled limited current conduction. An excess amount of RGO in PMMA does not result in any memory effect during the forward- and reverse-biased sweeps because there is a significant increase in the conductivity of PMMA:RGO film.

Keywords

Polymer Electrical properties Si Thin films Resistive switching Two-dimensional materials 

PACS Nos.

68.55.Ln 72.80.Le 72.80.Tm 73.63.Rt 73.50.−h 

Notes

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 106-2112-M-018-001-MY3) in the form of grants.

References

  1. [1]
    J Mangalam, S Agarwal, A N Resmi, M Sundararajan and K B Jinesh Org. Electron. 29 33 (2016).CrossRefGoogle Scholar
  2. [2]
    Y Lin, H Y Xu, Z Q Wang, T Cong, W Z Liu, H L Ma and Y C Liu Appl. Phys. Lett. 110 193503 (2017).ADSCrossRefGoogle Scholar
  3. [3]
    S T Han, L Hu, X Wang, Y Zhou, Y J Zeng, S Ruan, C Pan and Z Peng Adv. Sci. 2017 1600435 (2017).CrossRefGoogle Scholar
  4. [4]
    C C Hung and Y J Lin Chem. Phys. Lett. 692 388 (2018).ADSCrossRefGoogle Scholar
  5. [5]
    Y Liu, F Li, Z Chen, T Guo, C Wu and T W Kim Vacuum 130 109 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    I J Baek and W J Cho Solid State Electron. 140 129 (2018).ADSCrossRefGoogle Scholar
  7. [7]
    Y J Yang, M M Rehman, G U Siddiqui, K H Na and K H Choi Current Applied Physics 17 1733 (2017).ADSCrossRefGoogle Scholar
  8. [8]
    M V Jacob, D Taguchi, M Iwamoto, K Bazaka and R S Rawat Carbon 112 111 (2017).CrossRefGoogle Scholar
  9. [9]
    D I Son, T W Kim, J H Shim, J H Jung, D U Lee, J M Lee, W I Park and W K Choi Nano Lett. 10 2441 (2010).ADSCrossRefGoogle Scholar
  10. [10]
    S Dugu, S P Pavunny, T B Limbu, B R Weiner, G Morell and R S Katiyar APL Mater. 6 058503 (2018).ADSCrossRefGoogle Scholar
  11. [11]
    J H Lin, J J Zeng, Y C Su and Y J Lin Appl. Phys. Lett. 100 153509 (2012).ADSCrossRefGoogle Scholar
  12. [12]
    J J Zeng, C H Ruan, J H Lin and Y J Lin Semicond. Sci. Technol. 28 065008 (2013).ADSCrossRefGoogle Scholar
  13. [13]
    Q Yu, J Lian, S Siriponglert, H Li, Y P Chen and S S Pei Appl. Phys. Lett. 93 113103 (2008).ADSCrossRefGoogle Scholar
  14. [14]
    S J Chae, F Güneş, K K Kim, E S Kim, G H Han, S M Kim, H J Shin, S M Yoon, J Y Choi, M H Park, C W Yang, D Pribat and Y H Lee Adv. Mater. 21 2328 (2009).CrossRefGoogle Scholar
  15. [15]
    J Chen, L Xu, J Lin, Y Geng, L Wang and D Ma Appl. Phys. Lett. 89 083514 (2006).ADSCrossRefGoogle Scholar
  16. [16]
    T Guo, T Tan and Z Liu J. Mater. Sci.: Mater. Electron. 26 6699 (2015).Google Scholar
  17. [17]
    Z Xu, M Gao, L Yu, L Lu, X Xu and Y Jiang ACS Appl. Mater. Interfaces 6 17823 (2014).CrossRefGoogle Scholar
  18. [18]
    J X Shen, H Q Qian, G F Wang, Y H An, P G Li, Y. Zhang, S L Wang, B Y Chen and W H Tang Appl. Phys. A 111 303 (2013).ADSCrossRefGoogle Scholar
  19. [19]
    R Scheer J. Appl. Phys. 105 104505 (2009).ADSCrossRefGoogle Scholar
  20. [20]
    K H Park, J H Jung, F Li, D I Son and T W Kim Appl. Phys. Lett. 93 132104 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Yow-Jon Lin
    • 1
    Email author
  • Chang-Lin Wu
    • 1
  • Zun-Yuan Ke
    • 1
  • Hsing-Cheng Chang
    • 2
  1. 1.Institute of PhotonicsNational Changhua University of EducationChanghuaTaiwan, Republic of China
  2. 2.Department of Automatic Control EngineeringFeng Chia UniversityTaichungTaiwan, Republic of China

Personalised recommendations