Advertisement

Modified Green–Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress-free surface

  • Nihar Sarkar
  • Soumen De
  • Nantu SarkarEmail author
Original Paper

Abstract

The present study is concerned with the reflection and propagation of thermoelastic harmonic plane waves from the stress-free and isothermal surface of a homogeneous, isotropic thermally conducting elastic half-space in the frame of the modified Green–Lindasy (MGL) theory of generalized thermoelasticity with strain rate proposed by Yu et al. (Meccanica 53:2543–2554, 2018). The thermoelastic coupling effect creates two types of coupled longitudinal waves which are dispersive as well as exhibit attenuation. Different from the thermoelastic coupling effect, there also exists one independent vertically shear-type (SV-type) wave. In contrast to the classical Green–Lindsay (GL) and Lord–Shulman (LS) theories of generalized thermoelasticity, the SV-type wave is not only dispersive in nature but also experiences attenuation. Analytical expressions for the amplitude ratios of the reflected thermoelastic waves are determined when a coupled longitudinal wave is made incident on the free surface. The paper concludes with the numerical results on the phase speeds and the amplitude ratios for specific parameter choices. Various graphs have been plotted to analyze the behavior of these quantities. The characteristics of employing the MGL model are discussed by comparing the numerical results obtained for the present model with those obtained in case of the GL and LS models.

Keywords

Generalized thermoelasticity Modified GL model Dispersion relation Attenuation Reflection 

PACS Nos.

44.10.+i 46.40.Ff 62.20.Dc 91.30.-f 91.30.Cd 

Notes

References

  1. [1]
    M Biot J. Appl. Phys.  27 240 (1956)ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H W Lord and Y Shulman J. Mech. Phys. Solids  15 299 (1967)ADSCrossRefGoogle Scholar
  3. [3]
    C Cattaneo Comptes. Rendus. Acad. Sci.  2 431 (1958)Google Scholar
  4. [4]
    A E Green and K A Lindsay J. Elast.  2 1 (1972)CrossRefGoogle Scholar
  5. [5]
    A E Green and P M Naghdi Proc. R. Soc. Lond. A  432 171 (1991)ADSCrossRefGoogle Scholar
  6. [6]
    A E Green and P M Naghdi J. Therm. Stresses  15 253 (1992)ADSCrossRefGoogle Scholar
  7. [7]
    A E Green and P M Naghdi J. Elast.  31 189 (1993)MathSciNetCrossRefGoogle Scholar
  8. [8]
    M Marin Acta Mech  122 155 (1997)MathSciNetCrossRefGoogle Scholar
  9. [9]
    H H Sherief, A M A El-Sayed and A M A El-Latief Int. J. Solids Struct.  47 269 (2010)CrossRefGoogle Scholar
  10. [10]
    H M Youssef J. Heat Trans.  132 61301-1 (2010)CrossRefGoogle Scholar
  11. [11]
    Y Z Povstenko J. Therm. Stresses  34 97 (2011)CrossRefGoogle Scholar
  12. [12]
    Y J Yu, W Hu and X-G Tian Int. j. Eng. Sci.  81 123 (2014)CrossRefGoogle Scholar
  13. [13]
    M Bachher, N Sarkar and A Lahiri Int. J. Mech. Sci.  89 84 (2014)CrossRefGoogle Scholar
  14. [14]
    Y J Yu, X-G Tian and Q-L Xion Eur. J. Mech. A Solids  60 238 (2016)ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    Y J Yu, Z-N Xu, C-L Li and X-G Tian Compos. Struct.  146 108 (2016)CrossRefGoogle Scholar
  16. [16]
    M Marin Contin. Mech. Thermodyn.  29 1365 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    K Lotfy, R Kumar and W Hassan Appl. Math. Mech. Engl. Ed.  39 783 (2018)CrossRefGoogle Scholar
  18. [18]
    K Lotfy Sci. Rep.  9 3319 (2019)ADSCrossRefGoogle Scholar
  19. [19]
    K Lotfy Wave Random. Complex (2019)  https://doi.org/10.1080/17455030.2019.1580402
  20. [20]
    Y J Yu, Z-N Xue and X-G Tian Meccanica  53 2543–2554 (2018)MathSciNetCrossRefGoogle Scholar
  21. [21]
    R Quintanilla Meccanica  53 3607 (2018)MathSciNetCrossRefGoogle Scholar
  22. [22]
    P Chadwick and I N Sneddon J. Mech. Phys. Solids  6 223 (1958)ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A H Nayfeh and S Nemat-Nasser Acta Mech.  12 53 (1971)CrossRefGoogle Scholar
  24. [24]
    P Puri Int. J. Eng. Sci.  11 735 (1973)CrossRefGoogle Scholar
  25. [25]
    V K Agarwal Acta Mech.  34 185 (1979)CrossRefGoogle Scholar
  26. [26]
    S K Roychoudhuri and S Mukhopadhyay Int. J. Math. Math. Sci.  23 497 (2000)MathSciNetCrossRefGoogle Scholar
  27. [27]
    S B Sinha and K A Elsibai J. Therm. Stresses 20 129 (1997)CrossRefGoogle Scholar
  28. [28]
    J N Sharma, V Kumar and D Chand J. Therm. Stresses  26 925 (2003)CrossRefGoogle Scholar
  29. [29]
    M I A Othman and Y Q Song Acta Mech.  184 189 (2006)CrossRefGoogle Scholar
  30. [30]
    M I A Othman and Y Q Song Int. J. Solids Struct.  44 5651 (2007)CrossRefGoogle Scholar
  31. [31]
    N D Gupta, A Lahiri and N C Das Math. Mech. Solids 17 543 (2011)CrossRefGoogle Scholar
  32. [32]
    S M Abo-Dahab Can. J. Phys.  93 1 (2015)CrossRefGoogle Scholar
  33. [33]
    S Biswas and N Sarkar Mech. Mater.  126 140 (2018)CrossRefGoogle Scholar
  34. [34]
    Y Li, W Wang, P Wei and C Wang Meccanica  53 2921 (2018)MathSciNetCrossRefGoogle Scholar
  35. [35]
    N Sarkar and S K Tomar J. Therm. Stresses 42 580 (2019)CrossRefGoogle Scholar
  36. [36]
    S Mondal, N Sarkar and N Sarkar J. Therm. Stresses 42 1035 (2019)CrossRefGoogle Scholar
  37. [37]
    N Das, N Sarkar and A Lahiri Appl. Math. Model. 73 526 (2019)MathSciNetCrossRefGoogle Scholar
  38. [38]
    K Lotfy, S M Abo-Dahab and R Tantawy Silicon (2019)  https://doi.org/10.1007/s12633-019-00116-6 Google Scholar
  39. [39]
    D S Chandrasekharaiah Mech. Res. Commun.  23 549 (1996)CrossRefGoogle Scholar
  40. [40]
    V K Agarwal Acta Mech.  34 181 (1979)MathSciNetCrossRefGoogle Scholar
  41. [41]
    S K Roychoudhuri J. Elast.  15 59 (1985)CrossRefGoogle Scholar
  42. [42]
    J N Sharma, D Grover and D Kaur Appl. Math. Model.  35 3396 (2011)MathSciNetCrossRefGoogle Scholar
  43. [43]
    J D Achenbach Wave Propagation in Elastic Solids (New York: North-Holland) (1976)zbMATHGoogle Scholar
  44. [44]
    M C Singh and N Chakraborty Appl. Math. Model.  37 463 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of MathematicsCity CollegeKolkataIndia
  2. 2.Department of Applied MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations