Advertisement

Super rogue waves in coupled electric transmission lines

  • Ji Kai Duan
  • Yu Long BaiEmail author
  • Qiang Wei
  • Man Hong Fan
Original Paper
  • 4 Downloads

Abstract

Coupled electric transmission lines (CETLs), which consist of a great number of identical sections, have been studied theoretically in the present paper. The super rogue wave (SRW) in CETLs is analyzed using the nonlinear Schrödinger equation. The dependence of the characteristics of the SRW parameters on CETLs is displayed in this paper. The results may be useful for exploiting or avoiding SRWs in CETLs.

Keywords

Nonlinear system Super rogue wave Transmission lines 

PACS Nos.

05.45.-a 05.45.Yv 84.70.+p 

Notes

Acknowledgements

This research is funded by the NSFC (National Natural Science Foundation of China) project under Grant Number 41861047 and Northwest Normal University Young Teachers’ Research Capability Enhancement Team Project under Grant Number NWNU-LKQN-1706.

References

  1. [1]
    F Yu, K G Lyon and E C Kan IEEE Microw. Wirel. Compon. Lett. 22 618 (2012)CrossRefGoogle Scholar
  2. [2]
    J W Bragg, W W Sullivan, D Mauch, A A Neuber and J Dickens Rev. Sci. Instrum. 84 054703 (2013)CrossRefGoogle Scholar
  3. [3]
    M J Rodwell, M Kamegawa, R Yu, M Case, E Carman and K S Giboney IEEE Trans. Microw. Theory Tech. 39 1194 (1991)CrossRefGoogle Scholar
  4. [4]
    M Tan, C Su and W Anklam Electron. Lett. 24 213 (1988)CrossRefGoogle Scholar
  5. [5]
    W X Li, Z W Guo, Z B Guo and Z H Qiang Commun. Theor. Phys. 58 531 (2012)CrossRefGoogle Scholar
  6. [6]
    P L Christiansen, M P Sorensen and A C Scott Nonlinear Science at the Dawn of the 21st Century (Berlin: Springer) (2000)CrossRefzbMATHGoogle Scholar
  7. [7]
    S B Leble Nonlinear Waves in Optical Waveguides and Soliton Theory Applications (Berlin: Springer) (2002)CrossRefGoogle Scholar
  8. [8]
    A I Dyachenko and V E Zakharov J. Exp. Theor. Phys. Lett. 81 255 (2005)CrossRefGoogle Scholar
  9. [9]
    F Francesco, B Joseph, P D L Sonia, D John and D Frederic Sci. Rep. 6 27715 (2016)CrossRefGoogle Scholar
  10. [10]
    V E Zakharov and L A Ostrovsky Phys. D Nonlinear Phenom. 238 540 (2017)CrossRefGoogle Scholar
  11. [11]
    W P Su, J R Schrieffer and A J Heeger Phys. Rev. B 22 2099 (1980)CrossRefGoogle Scholar
  12. [12]
    A D Boardman and K Xie Radio Sci. 28 891 (2016)CrossRefGoogle Scholar
  13. [13]
    N N Akhmediev and A Ankiewicz Solitons: Nonlinear Pulses and Beams (Boca Raton: Chapman Hall) (1997)zbMATHGoogle Scholar
  14. [14]
    A Scott SIAM Rev. 43 223 (2001)Google Scholar
  15. [15]
    Q Wang, X Li, J Zhang and Y Li Optik 164 721 (2018)CrossRefGoogle Scholar
  16. [16]
    V Zakharov and A Gelash Nonlinear Sci. Exactly Solvable Integrable Syst. 1109 620 (2012)Google Scholar
  17. [17]
    M J Lighthill J. Appl. Math. 1 1 (1965)MathSciNetGoogle Scholar
  18. [18]
    B G Whitham J. Fluid Mech. 22 273 (1965)MathSciNetCrossRefGoogle Scholar
  19. [19]
    S F Tian J. Differ. Equ. 262 506 (2017)CrossRefGoogle Scholar
  20. [20]
    S F Tian Proc. R. Soc. A 472 0588 (2016)Google Scholar
  21. [21]
    L L Feng and T T Zhang Appl. Math. Lett. 78 133 (2018)MathSciNetCrossRefGoogle Scholar
  22. [22]
    Z Du, B Tian, H P Chai, Y Sun and X H Zhao Chaos Solitons Fractals 109 90 (2018)MathSciNetCrossRefGoogle Scholar
  23. [23]
    C R Zhang, B Tian, X Y Wu, Y Q Yuan and X X Du Phys. Scr. 93 095202 (2018)CrossRefGoogle Scholar
  24. [24]
    W Q Peng, S F Tian, T T Zhang Europhys. Lett. 123 50005 (2018)CrossRefGoogle Scholar
  25. [25]
    X B Wang, T T Zhang, M J Dong Appl. Math. Lett. 86 298 (2018)MathSciNetCrossRefGoogle Scholar
  26. [26]
    X B Wang, S F Tian, C Y Qin and T T Zhang Appl. Math. Lett. 68 40 (2017)MathSciNetCrossRefGoogle Scholar
  27. [27]
    C Y Qin, S F Tian, X B Wang, T T Zhang and J Li Comput. Math. Appl. 75 4221 (2018)MathSciNetCrossRefGoogle Scholar
  28. [28]
    X W Yan, S F Tian, M J Dong, L Zhou and T T Zhang Comput. Math. Appl. 76 179 (2018)MathSciNetCrossRefGoogle Scholar
  29. [29]
    X Y Gao Appl. Math. Lett. 73 143 (2017)MathSciNetCrossRefGoogle Scholar
  30. [30]
    M J Dong, S F Tian, X W Yan and L Zou Comput. Math. Appl. 75 957 (2018)MathSciNetCrossRefGoogle Scholar
  31. [31]
    L Liu, B Tian, Y Q Yuan and Z Du Phys. Rev. E 97 052217 (2018)MathSciNetCrossRefGoogle Scholar
  32. [32]
    X Y Wu, B Tian, L Liu and Y Sun Comput. Math. Appl. 76 215 (2018)MathSciNetCrossRefGoogle Scholar
  33. [33]
    C C Hu, B Tian, X Y Wu, Y Q Yuan and Z Du Eur. Phys. J. Plus 133 40 (2018)CrossRefGoogle Scholar
  34. [34]
    X H Zhao, B Tian, X Y Xie, X Y Wu, Y Sun and Y J Guo Waves Random Complex Media 28 356 (2018)MathSciNetCrossRefGoogle Scholar
  35. [35]
    Y Q Yuan, B Tian, L Liu, X Y Wu and Y Sun J. Math. Anal. Appl. 460 476 (2018)MathSciNetCrossRefGoogle Scholar
  36. [36]
    X Y Gao Appl. Math. Lett. 91 165 (2019)MathSciNetCrossRefGoogle Scholar
  37. [37]
    V E Zakharov and A B Shabat J. Exp. Theor. Phys. 37 823 (1973)Google Scholar
  38. [38]
    N K Vitanov, A Chabchoub and N Hoffmann J. Theor. Appl. Mech. 43 43 (2013)CrossRefGoogle Scholar
  39. [39]
    J He Rom. J. Phys. 62 203 (2017)Google Scholar
  40. [40]
    F Baronio, B Frisquet, S Chen, G Millot, S Wabnitz and B Kibler Phys. Rev. A 97 13852 (2018)CrossRefGoogle Scholar
  41. [41]
    J M Dudley, F Dias, M Erkintalo and G Genty Nat. Photonics 8 755 (2014)CrossRefGoogle Scholar
  42. [42]
    M Bacha, M Tribeche and P K Shukla Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85 056413 (2012)CrossRefGoogle Scholar
  43. [43]
    M Emamuddin, M M Masud and A A Mamun Astrophys. Space Sci. 349 821 (2014)CrossRefGoogle Scholar
  44. [44]
    J Tamang, K Sarkar and A Saha Phys. A Stat. Mech. Appl. 505 18 (2018)CrossRefGoogle Scholar
  45. [45]
    V B Efimov, A N Ganshin, G V Kolmakov, P V E Mcclintock and L P Mezhov-Deglin Eur. Phys. J. Special Top. 185 181 (2010)CrossRefGoogle Scholar
  46. [46]
    Y V Bludov and V V Konotop Phys. Rev. A 81 15780 (2010)Google Scholar
  47. [47]
    M Onorato, S Residori, U Bortolozzo, A Montina and F T Arecchi Phys. Rep. 528 47 (2013)MathSciNetCrossRefGoogle Scholar
  48. [48]
    P Marquie, J M Bilbault and M Remoissenet Phys. Rev. E 49 828 (1994)CrossRefGoogle Scholar
  49. [49]
    Y Nejoh J. Phys. A Gen. Phys. 20 1733 (1999)MathSciNetCrossRefGoogle Scholar
  50. [50]
    F B Pelap and M M Faye Nonlinear Oscil. 8 513 (2005)MathSciNetCrossRefGoogle Scholar
  51. [51]
    W S Duan Europhys. Lett. 66 192 (2004)CrossRefGoogle Scholar
  52. [52]
    T Yoshinaga and T Kakutani J. Phys. Soc. Jpn. 56 3447 (1987)CrossRefGoogle Scholar
  53. [53]
    N Akhmediev, A Ankiewicz and M Taki Phys. Lett. A 373 675 (2009)CrossRefGoogle Scholar
  54. [54]
    A Slunyaev, E Pelinovsky, A Sergeeva, A Chabchoub, N Hoffmann, M Onorato and N Akhmediev Phys. Rev. E 88 012909 (2013)CrossRefGoogle Scholar
  55. [55]
    D Peregrine ANZIAM J. 25 16 (1983)MathSciNetGoogle Scholar
  56. [56]
    V I Shrira and V V Geogjaev J. Eng. Math. 67 11 (2010)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Ji Kai Duan
    • 1
  • Yu Long Bai
    • 1
    Email author
  • Qiang Wei
    • 1
  • Man Hong Fan
    • 1
  1. 1.College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations