Advertisement

Phonon and thermodynamic properties of bcc transition metals using MEAM potentials

  • Gwang-Byol Jong
  • Pom Song
  • Hak-Son JinEmail author
Original Paper

Abstract

Recently, Jin et al. (Appl. Phys. A 120:189, 2015) have improved the modified embedded atom method (MEAM) potentials for metals. The validity of those potentials for the body-centered cubic (bcc) transition metals, Cr, Fe, Mo, Nb, Ta, V, and W, is examined by reproducing the phonon and thermodynamic properties, studied both experimentally and theoretically a lot. The phonon dispersion curve and density of states are plotted. Also, several thermal properties, including the linear thermal expansion coefficient, molar heat capacity at constant volume, Debye temperature, and Grüneisen parameter, are calculated within the quasiharmonic approximation. All results are discussed in light of available calculated and measured data. Though some discrepancies are observed in the individual results, the phonon and thermodynamic properties considered here are predicted reasonably well by the present model for these metals on the whole.

Keywords

EAM MEAM Bcc transition metal Phonon dispersion relation DOS Thermodynamic property QHA 

PACS Nos.

61.72.jd 71.20.Be 63.20.Dj 

Notes

References

  1. [1]
    M S Daw and M I Baskes Phys. Rev. B 29 6443 (1984)CrossRefGoogle Scholar
  2. [2]
    M I Baskes Phys. Rev. Lett. 59 2666 (1987)CrossRefGoogle Scholar
  3. [3]
    M I Baskes Phys. Rev. B 46 2727 (1992)CrossRefGoogle Scholar
  4. [4]
    R Pasianot, D Farkas and E J Savino Phys. Rev. B 43 6952 (1991)CrossRefGoogle Scholar
  5. [5]
    D J Oh and R A Johnson J. Mater. Res. 3 471 (1988)CrossRefGoogle Scholar
  6. [6]
    B Zhang, Y Ouyang, S Liao and Z Jin Physica B 262 218 (1999)Google Scholar
  7. [7]
    B Zhang, W Hu and X Shu Theory of Embedded Atom Method and its Application to Materials Science—Atomic Scale Materials Design Theory (Changsha: Hunan University Press, 2003)Google Scholar
  8. [8]
    H Jin, J An and Y Jong Appl. Phys. A 120 189 (2015)Google Scholar
  9. [9]
    H Jin, J Pak and Y Jong Appl. Phys. A 123 257 (2017)CrossRefGoogle Scholar
  10. [10]
    C Jon, H Jin and C Hwang Radiat. Eff. Defects Solids 172 575 (2017)MathSciNetCrossRefGoogle Scholar
  11. [11]
    S Chantasiriwan and F Milstein Phys. Rev. B 58 5998 (1998)CrossRefGoogle Scholar
  12. [12]
    Y Shimomura, K Sugio, Y Kogure and M Doyama Comput. Mater. Sci. 14 36 (1999)Google Scholar
  13. [13]
    W Hu and F Masahiro Model. Simul. Mater. Sci. Eng. 10 707 (2002)CrossRefGoogle Scholar
  14. [14]
    S Ryu and W Cai Model. Simul. Mater. Sci. Eng. 16 085005 (2008)CrossRefGoogle Scholar
  15. [15]
    X J Zhang, J M Zhang and K W Xu Physica B 391 286 (2007)Google Scholar
  16. [16]
    V Gairola, P D Semalty and P N Ram Indian J. Phys. 88 171 (2014)Google Scholar
  17. [17]
    V Gairola, P D Semalty and P N Ram Pramana J. Phys. 80 1041 (2013)MathSciNetGoogle Scholar
  18. [18]
    M Doyama and Y Kogure Radiat. Eff. Defects Solids 142 107 (1997)CrossRefGoogle Scholar
  19. [19]
    M W Finnis and J E Sinclair Philos. Mag. A 50 45 (1984)CrossRefGoogle Scholar
  20. [20]
    S Aubry and D A Hughes Phys. Rev. B 73 224116 (2006)CrossRefGoogle Scholar
  21. [21]
    R Hultgern, R L Orr, P D Anderson and K K Kelley Selected Values of Thermodynamic Properties of Metals and Alloys (New York: Wiley, 1963)Google Scholar
  22. [22]
    F H Stillinger and T A Weber Phys. Rev. B 31 5262 (1985)CrossRefGoogle Scholar
  23. [23]
    K Ding and H C Andersen Phys. Rev. B 34 6987 (1986)CrossRefGoogle Scholar
  24. [24]
    F Seitz and D Turnbull Solid State Physics vol. 16 (New York: Academic, 1964)zbMATHGoogle Scholar
  25. [25]
    H B Moller and A R Makintosh Inelastic Scattering of Neutrons (Vienna: IAEA, 1965)Google Scholar
  26. [26]
    V J Minkiewicz, G Shirane and R Nathans Phys. Rev. 162 528 (1967)Google Scholar
  27. [27]
    A D B Woods and S H Chen Solid State Commun. 2 233 (1964)CrossRefGoogle Scholar
  28. [28]
    Y Nakagawa and A D B Woods Phys. Rev. Lett. 11 271 (1963)CrossRefGoogle Scholar
  29. [29]
    A D B Woods Phys. Rev. 136 A781 (1964)Google Scholar
  30. [30]
    R Colella and B W Batterman Phys. Rev. B 1 3913 (1970)CrossRefGoogle Scholar
  31. [31]
    S H Chen and B N Brockhous Solid State Commun. 2 73 (1964)CrossRefGoogle Scholar
  32. [32]
    S S Pohlong and P N Ram Indian. J. Phys. 79 973 (2005)Google Scholar
  33. [33]
    S Y Savrasov and D Y Savrasov Phys. Rev. B 54 16487 (1996)CrossRefGoogle Scholar
  34. [34]
    A Debernardi, M Alouani and H Dreysse Phys. Rev. B 63 064305 (2001)CrossRefGoogle Scholar
  35. [35]
    C B Walker Phys. Rev. 103 547 (1956)CrossRefGoogle Scholar
  36. [36]
    G Gilat and G Dolling Phys. Lett. 8 304 (1964)CrossRefGoogle Scholar
  37. [37]
    G Gilat and L T Raubenheimer Phys. Rev. 144 390 (1966)CrossRefGoogle Scholar
  38. [38]
    J M Wills Phys. Rev. B 28 4363 (1983)Google Scholar
  39. [39]
    Y S Touloukian, R K Kirby, R E Taylor and P D Desai Thermophysical Properties of Matter vol. 12: Thermal Expansion-Metallic Elements and Alloys (New York: Plenum, 1975)Google Scholar
  40. [40]
    F Milstein and J Marschall Acta Metall. Mater. 40 1229 (1992)CrossRefGoogle Scholar
  41. [41]
    M S Daw and R D Hatcher Solid State Commun. 56 697 (1985)CrossRefGoogle Scholar
  42. [42]
    W Hu, X Shu and B Zhang Comp. Mater. Sci. 23 175 (2002)Google Scholar
  43. [43]
    Z-Y Zeng, C-E Hu, L-C Cai, X-R Chen and F-Q Jing J. Phys. Chem. B 114 298 (2010)CrossRefGoogle Scholar
  44. [44]
    Z-L Liu, L-C Cai, X-R Chen, Q Wu and F-Q Jing J. Phys. Condens. Matter 21 095408 (2009)CrossRefGoogle Scholar
  45. [45]
    J Zarestky, C Stassis, B N Harmon, K-M Ho and C L Fu Phys. Rev. B 28 697 (1983)CrossRefGoogle Scholar
  46. [46]
    D L Farber, M Krisch, D Antonangeli, A Beraud, J Badro, F Occelli and D Orlikowski Phys. Rev. Lett. 96 115502 (2006)CrossRefGoogle Scholar
  47. [47]
    Numerical Data and Functional Relationships in Science and Technology, edited by K-H Hellwege and J L Olsen, Landolt-Börnstein, New Series, Group III, Vol. 13, Pt. a (Springer, Berlin, 1981)Google Scholar
  48. [48]
    A M Guellil and J B Adams J. Mater. Res. 7 639 (1992)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Faculty of Energy ScienceKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea

Personalised recommendations