Lie symmetries of the relative motion systems on time scales

  • Sheng-Nan Gong
  • Hui-Fang GaoEmail author
  • Jing-Li FuEmail author
Original Paper


In this paper, the Lie symmetries and conserved quantities of the relative motion systems on time scales are proposed and studied. The Lagrange equations with delta derivatives on time scales are derived. By defining the infinitesimal transformations generators and using the invariance of differential equations under infinitesimal transformations, the determining equations of the Lie symmetries on time scales are established. Then, the structural equation and the form of conserved quantities of the Lie symmetries are given. Lie symmetries of the relative motion systems in discrete and continuous systems were discussed, respectively. Finally, an example is given to illustrate the applications of the conclusion.


Time scale Lie symmetry The relative motion system 


02.20.Sv 11.30.-J 45.10.Db 45.20.Jj 



This work has been supported by the National Natural Science Foundation of China (Grant No. 11472247).


  1. [1]
    B Aulbach and S Hilger Qualitative Theory of Differential Equations, Szeged (1988)Google Scholar
  2. [2]
    F M Atici, D C Biles and A Lebedinsky Math. Comput. Model. 43 718 (2006)CrossRefGoogle Scholar
  3. [3]
    Z Bartosiewicz IFAC Proceedings Volumes, 38 435 (2005)Google Scholar
  4. [4]
    A Peterson and C Allan Dynamic Equations on Time Scales, (Boston: Birkhäuser) (2001)Google Scholar
  5. [5]
    C D Ahlbrandt and C Morian J. Comput. Appl. Math. 141 35 (2002)Google Scholar
  6. [6]
    M Bohner Dyn. Syst. Appl. 13 339 (2004)Google Scholar
  7. [7]
    A C F Rui and D F M Torres Math. Control T&Finance. (2008). Google Scholar
  8. [8]
    Z Bartosiewicz, N Martins and D F M Torres Eur. J. Control 17 9 (2011)CrossRefGoogle Scholar
  9. [9]
    Z Bartosiewicz and D F M Torres J. Math. Anal. Appl. 342 1220 (2008)CrossRefGoogle Scholar
  10. [10]
    N Martins and D F M Torres Appl. Math. Lett. 23 1432 (2010)MathSciNetCrossRefGoogle Scholar
  11. [11]
    D F M Torres Maths 36 33–38 (2003)Google Scholar
  12. [12]
    P P Cai, J L Fu and Y X Guo Sci. China-Phys. Mech. Astron. 5 1017 (2013)CrossRefGoogle Scholar
  13. [13]
    C J Song and Y Zhang J. Math. Phys. 56 10 (2015)Google Scholar
  14. [14]
    X H Zhai and Y Zhang Commun. Nonlinear Sci. Numer Simul. 52 32 (2017)CrossRefGoogle Scholar
  15. [15]
    A I Lur’e Analytical Mechanics (Moscow:GIFML) (1961) (in Russian) Google Scholar
  16. [16]
    L Q Chen Mech. Mater. Struct. 14 63 (1992)Google Scholar
  17. [17]
    R W Liu Coll. Phys. 12 3 (1993)Google Scholar
  18. [18]
    R W Liu, J L Fu and F X Mei J. Beijing Inst. Technol. (Eng. Ed.) 7 221 (1998)Google Scholar
  19. [19]
    F X Mei and H B Wu Acta Phys. Sin. 58 5919 (2009)Google Scholar
  20. [20]
    X X Wang, X T Sun and M L Zhang Acta Phys. Sin. 61 64501 (2012)Google Scholar
  21. [21]
    X W Zhang Acta Phys. Sin. 55 2610 (2006)Google Scholar
  22. [22]
    M Lutzky J. Phys. A Math. Gen. 12 973 (1979)Google Scholar
  23. [23]
    R W Liu and J L Fu Appl. Math. Mech. 20 635 (1999)CrossRefGoogle Scholar
  24. [24]
    J L Fu, B Y Chen and H Fu Sci. China Phys. Mech. Astron. 54 288–295 (2011)CrossRefGoogle Scholar
  25. [25]
    D Levi and P Winternitz Phys. Lett. A 152 335 (1991)CrossRefGoogle Scholar
  26. [26]
    R P Agarwal, M Bohner and A Peterson J. Comput. Appl. Math. 141 1 (2002)CrossRefGoogle Scholar
  27. [27]
    P P Cai, J L Fu, S Duan and F Y Hong China-Phys. (2012)Google Scholar
  28. [28]
    P P Cai and J L Fu Rep. Math. Phys. 79 279 (2017)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Institute of Mathematical PhysicsZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.The College of Electronics and InformationHangzhou Dianzi UniversityHangzhouChina
  3. 3.College of Mechanical and Automotive EngineeringZhejiang University of Water Resources and Electric PowerHangzhouChina

Personalised recommendations