Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrical characteristics and conduction mechanism of microwave-sintered (Ba0.8Sr0.2)(Zr0.1Ti0.8Ce0.1)O3 electronic ceramics

  • 34 Accesses

Abstract

This paper presents the fabrication and electrical characterization of a lead-free polycrystalline complex electronic material Ba0.8Sr0.2(Zr0.1Ti0.8Ce0.1)O3 (abbreviated as BSZTCO) using standard experimental techniques. The phase identification of the material, determined using X-ray diffraction data, depicts the formation of a multi-phase system. The various electrical parameters were obtained at different frequencies (102–106 Hz) and temperatures (20–500 °C) using the phase-sensitive meter and found interesting results. Study of the micrograph of natural surfaces of the sample suggests that the ceramic sample has been formed with high density grain growth (without any cracks or voids). The transport properties and dielectric relaxation characteristics of the material have been studied using modulus and impedance spectroscopy techniques. Temperature dependence of conduction behavior (Nyquist plot) confirms the presence of bulk and grain boundary effects in the material. The charge transfer by hopping dominates the electrical transport process of the material as revealed from conductivity analysis. The dielectric relaxation of the material is studied using a complex modulus spectrum depicting non-Debye type relaxation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. [1]

    K G Ewsuk and G L Messing J. Mater. Sci.19 1530 (1984)

  2. [2]

    J Gao, D Xue, W Liu, C Zhou and X Ren Actuators6 24 (2017)

  3. [3]

    J H Hwang and Y H Han J. Am. Ceram. Soc.84 1750 (2001)

  4. [4]

    R Kumar, K Asokan, S Patnaik and B Birajdar AIP Conference Proceedings1731 p 030025 (2016)

  5. [5]

    K-T Kim and C-I Kim Surf. Coat. Technol.200 4708 (2006)

  6. [6]

    Y Hoshi, P H Xiang, H Takeda, T Nishida, K Uchiyama and T Shiosaki, Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, Nara, p 823 (2007)

  7. [7]

    T Takeuchi and H Kageyama J. Mater. Res.18 1809 (2003)

  8. [8]

    W Liu and X Ren Phys. Rev. Lett.103 257602 (2009)

  9. [9]

    N. Pradhani, P K Mahapatra and R N P Choudhary, J. Phys. Mater.1 015007 (2018)

  10. [10]

    M Chen, Q Xu, B H Kim, B K Ahn and W. Chen, Mater. Res. Bull.43 1420 (2008)

  11. [11]

    Q C Sun, C M Lu and H Zhou Rare Met.24 235(2005)

  12. [12]

    J Zhua, L Xiao, T Ding, Y Wang and Y Fan J. Appl. Phys.118 115305 (2015)

  13. [13]

    V Bijalwan, P Tofel and V Holcman J. Asian Ceram. Soc. (2018). https://doi.org/10.1080/21870764.2018.1539211

  14. [14]

    W Mao, W Chen, X Wang, Y Zhu, Y Maa, H Xue, L Chu, J Yang, X Li and W Huang Ceram. Int.42 12838 (2016)

  15. [15]

    L. Keller (Fargo: North Dakota State University) (1982)

  16. [16]

    J Joseph, T M Vimala, J Raju and V R K Murthy J. Phys. D Appl. Phys.32 1049 (1999)

  17. [17]

    D Grier, G. McCarthy (Fargo: North Dakota State University) (1991)

  18. [18]

    B Behera, P Nayak and R N P Choudhary Mater. Res. Bull.43 401(2008)

  19. [19]

    S Hajra, S Sahoo, T Mishra, M De, P K Rout and R N P Choudhary J. Mater Sci Mater. Electron.29 7876 (2018)

  20. [20]

    S Nath, S K Barick, S Hajra and R N P Choudhary J. Mater. Sci. Mater. Electron.29 12251 (2018)

  21. [21]

    A A Bokov and Z G Ye J. Mater. Sci.41 31 (2006)

  22. [22]

    S Sen, R N P Choudhary, A Tarafdar and P Pramanik J. Appl. Phys.99 124114 (2006)

  23. [23]

    V Purohit, R Padhee and R N P Choudhary J. Mater. Sci. Mater. Electron.29 5224 (2018)

  24. [24]

    K Schwarzburg and F Willig J. Phys. Chem. B107 3552 (2003)

  25. [25]

    C Li and X Wei J. Mater. Sci.47 4200 (2012)

  26. [26]

    S Hajra, A Tripathy, B K Panigrahi and RNP Choudhary, Mater. Res. Express6 076304 (2019)

  27. [27]

    H Yang, F Yan, Ge Zhang, Y Lin and F Wang J. Alloys Compds.720 116 (2017)

  28. [28]

    M Sahu, S Pradhan, S Hajra, B K Panigrahi and R N P Choudhary Appl. Phys. A 123 183 (2019)

  29. [29]

    F A Kroger and H J Vink J. Phys. Chem. Solids5 208 (1958)

  30. [30]

    N Hirose and A R West J Am Ceram Soc79 1633 (1996)

  31. [31]

    J S Kim J. Phys. Soc. Jpn.70 3129 (2001)

  32. [32]

    J Ross Macdonald Solid State Ion.13 147 (1984)

  33. [33]

    M A L Nobre and S J Langfredi J Phys Chem Solids62 1999 (2001)

  34. [34]

    J D Bobic, R M Katiliute, M Ivanov, M M V Petrovic, N I Ilic, A S Džunuzovic, J Banys and B D Stojanovic J. Mater. Sci.27 2448 (2016)

  35. [35]

    S R Elliot Philos Magn36 1291 (1977)

  36. [36]

    A Ghosh Phys Rev B42 1388 (1990)

  37. [37]

    T M Meaz, S M Attia and A M Abo El Ata J. Magn. Magn. Mater.257 296 (2003)

Download references

Acknowledgements

The authors like to give their sincere gratitude to Prof. (Dr.) K.L Yadav, IIT Roorkee, for helping us in SEM experiment.

Author information

Correspondence to Manisha Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajra, S., Purohit, V., Sahu, M. et al. Electrical characteristics and conduction mechanism of microwave-sintered (Ba0.8Sr0.2)(Zr0.1Ti0.8Ce0.1)O3 electronic ceramics. Indian J Phys 94, 175–182 (2020). https://doi.org/10.1007/s12648-019-01471-1

Download citation

Keywords

  • Microwave sintering
  • Dielectric
  • Conductivity
  • Modulus

PACs Nos.

  • 61.10.Nz
  • 84.37.+q
  • 73.40.-c