The effect of chirality on the torsion of nanotubes embedded in an elastic medium using doublet mechanics

  • M. R. Ebrahimian
  • A. ImamEmail author
  • M. Najafi
Original Paper


In this paper, the torsion of nanotubes embedded in an elastic medium is studied using doublet mechanics wherein the governing equations take the effects of scale parameter and chirality explicitly and simultaneously into account. Using this approach, it is shown that the effect of chirality is present only in the scaling theory. Thus, if the scaling characteristics of the nanotube are deemed important so is the chirality. Specifically, the effects of parameters such as the chiral angle, scale parameter, geometric properties of the nanotubes and boundary conditions are investigated in detail. It is shown that increasing the scale parameter causes an increase in the angular displacement. Also, by considering the effect of chirality, it is shown that the armchair arrangement of the nanotube has a higher torsional stiffness than the zigzag arrangement. The results of the present work are compared with the nonlocal theory, numerical methods and molecular simulations and good agreement with the latter approaches is observed.


Doublet mechanics Chirality Scale parameter Torsion of nanotubes Elastic medium 


02.30.Hq 11.30.Rd 61.48.De 62.20.Dc 89.20.Kk 



  1. [1]
    M Ferrari, V T Granik, A Imam and J C Nadeau Advances in Doublet Mechanics (Heidelberg: Springer) (1997)CrossRefzbMATHGoogle Scholar
  2. [2]
    P Endla and N Gopi Krishna Indian J. Phys. 88 157 (2014)CrossRefGoogle Scholar
  3. [3]
    M Zakeri and M Shayanmehr JUFGNSM 46 1 (2013)Google Scholar
  4. [4]
    G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)ADSCrossRefGoogle Scholar
  5. [5]
    H-T Thai Int J. Eng Sci 52 56 (2012)CrossRefGoogle Scholar
  6. [6]
    N Lazić, T Vuković, G Volonakis, I Milošević, S Logothetidis and M Damnjanović J. Phys. Condens. Matter. 24 485302 (2012)CrossRefGoogle Scholar
  7. [7]
    A Favata and P Podio-Guidugli Eur. J. Mech. A Solids 45 198 (2014)ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E Ghavanloo and S A Fazelzadeh Meccanica 51 41 (2016)MathSciNetCrossRefGoogle Scholar
  9. [9]
    A R Hall, S Paulson, T Cui, J P Lu, L C Qin and S Washburn Rep on Prog Phys 75 116501 (2012)CrossRefGoogle Scholar
  10. [10]
    A C Eringen Int. J. Eng. Sci. 10 1 (1972)CrossRefGoogle Scholar
  11. [11]
    C Li, C W Lim and J Yu Acta. Mech. Solid Sin. 24 484 (2011)CrossRefGoogle Scholar
  12. [12]
    C Li Compos. Struct. 118 607 (2014)CrossRefGoogle Scholar
  13. [13]
    M Arda and M Aydogdu Compos. Struct. 114 80 (2014)CrossRefGoogle Scholar
  14. [14]
    C W Lim, M Z Islam and G Zhang Int. J. Mech. Sci. 94–95 232 (2015)CrossRefGoogle Scholar
  15. [15]
    J Peddieson, G R Buchanan and R P McNitt Int. J. Eng. Sci. 41 305 (2003)CrossRefGoogle Scholar
  16. [16]
    Q Wang and K M Liew Phys. Lett. A 363 236 (2007)ADSCrossRefGoogle Scholar
  17. [17]
    Q W Zhang and B Li Carbon 94 826 (2015)CrossRefGoogle Scholar
  18. [18]
    A I Melker and A I Zhaldybin Int. Conf Nanomeeting (2007)Google Scholar
  19. [19]
    Z Wang, M Devel and B Dulmet Surf. Sci. 604 496 (2010)ADSCrossRefGoogle Scholar
  20. [20]
    Q-L Xiong and X G Tian AIP. Adv. 5 107215 (2015)ADSCrossRefGoogle Scholar
  21. [21]
    Y Wang, X Wang Xiu and X Ni Model. Simul. Mater. Sci. 12 1099 (2004)CrossRefGoogle Scholar
  22. [22]
    S Yoji and O Shigenobu Model. Simul. Mater. Sci. 12 599 (2004)CrossRefGoogle Scholar
  23. [23]
    A Montazeri, M Sadeghi, R Naghdabadi and H Rafii-Tabar Compos. Mater. Sci. 49 544 (2010)CrossRefGoogle Scholar
  24. [24]
    R Merli, C Lázaro, S Monleón and A Domingo Comput. Struct. 127 68 (2013)CrossRefGoogle Scholar
  25. [25]
    N A Kasti Adv. Math. Res. 452-453 1139 (2012)Google Scholar
  26. [26]
    G H Majzoobi, J Payandehpeyman and Z B Nojini Int. J. Nanosci. 10 989 (2011)CrossRefGoogle Scholar
  27. [27]
    J Wu, Z Zhang, B Liu, K C Hwang and Y Huang Int. J. Plast. 25 1879 (2009)CrossRefGoogle Scholar
  28. [28]
    N Silvestre Int. J. Solids Struct. 45 4902 (2008)CrossRefGoogle Scholar
  29. [29]
    F Khademolhosseini, R K N D Rajapakse and A Nojeh Comput. Mater. Sci. 48 736 (2010)CrossRefGoogle Scholar
  30. [30]
    N Silvestre Eur. J. Mech. A Solids 32 103 (2012)ADSCrossRefGoogle Scholar
  31. [31]
    A N Roy Chowdhury, C M Wang and S J A Koh Int. J. Appl. Mech. 06 1450006 (2014)CrossRefGoogle Scholar
  32. [32]
    A F G Pereira, J V Fernandes, J M Antunes and N A Sakharova Phys. Status Solidi B 253 366 (2016)ADSCrossRefGoogle Scholar
  33. [33]
    Y Sun and K M Liew Comput. Mater. Sci. 42 444 (2008)CrossRefGoogle Scholar
  34. [34]
    J Wackerfuß Int. J. Numer. Meth. Eng. 77 969 (2009)MathSciNetCrossRefGoogle Scholar
  35. [35]
    J-N Ding, B Kan, G-G Cheng, Z Fan, N-Y Yuan and Z-Y Ling Int. J. Nonlinear Sci. Numer. Simul. 9 309 (2008)CrossRefGoogle Scholar
  36. [36]
    V T Granik and M Ferrari Mech. Mater. 15 301 (1993)CrossRefGoogle Scholar
  37. [37]
    M R Ebrahimian, A Imam and M Najafi ZAMM-Z Angew. Math. Mech. 98 1642 (2018)MathSciNetCrossRefGoogle Scholar
  38. [38]
    A Fatahi-Vajari and A Imam Indian J. Phys. 90 447 (2016)ADSCrossRefGoogle Scholar
  39. [39]
    A Fatahi-Vajari and A Imam ZAMM-Z Angew. Math. Mech. 96 1020 (2016)MathSciNetCrossRefGoogle Scholar
  40. [40]
    A Fatahi-Vajari and A Imam Z. Angew. Math. Phys. 67 1 (2016)CrossRefGoogle Scholar
  41. [41]
    A Fatahi-Vajari and Z Azimzadeh Indian J. Phys. 92 1425 (2018)ADSCrossRefGoogle Scholar
  42. [42]
    U Gul, M Aydogdu and G Gaygusuzoglu Compos. Struct. 160 1268 (2017)CrossRefGoogle Scholar
  43. [43]
    U Gul, M Aydogdu and G Gaygusuzoglu J. Eng. .Math 109 85 (2017)CrossRefGoogle Scholar
  44. [44]
    M Aydogdu and U Gul Compos. Struct. 137 60 (2018)Google Scholar
  45. [45]
    U Gul and M Aydogdu Compos. Part B Eng. 137 60 (2018)CrossRefGoogle Scholar
  46. [46]
    A Fatahi-Vajari ZAMM-Z Angew. Math. Mech. 98 255 (2018)MathSciNetCrossRefGoogle Scholar
  47. [47]
    U Gul and M Aydogdu Physica E 93 345 (2017)ADSCrossRefGoogle Scholar
  48. [48]
    U Gul and M Aydogdu Int J. Mech. Mater. Des. 14 195 (2018)CrossRefGoogle Scholar
  49. [49]
    P M Naghdi The Theory of Shells and Plates (Heidelberg: Springer) (1972)Google Scholar
  50. [50]
    S Timoshenko and J N Goodier Theory of Elasticity (McGraw-Hill Book Company) (1951)Google Scholar
  51. [51]
    Z M Islam, P Jia and C W Lim Int. J. Appl. Mech. 6 145001 (2014)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations