Advertisement

Multilayer angular optical filter as a smart window

  • Arafa H. AlyEmail author
  • Ashour M. Ahmed
  • Mohamed Shaban
OriginalPaper
  • 40 Downloads

Abstract

The ability for controlling the light based on the angle of incidence played an essential role in many technological applications. In the present work, an angular optical filter consists of multilayers designed by Essential Macleod software within the visible and near-infrared regions. By using the transfer matrix method, we have obtained the transmission properties for the p-polarized light depending on the angle of incidence. The proposed filter can be easily used to control the transmission of visible and NIR light depending on the angle of incidence. Transmission of NIR at 1200 nm increases from 21.26 to 78.89% as the incident angle changed from 5° to 55°, respectively. Simultaneously, the transmission of the visible light is higher than 87%. These results may have a potential application in controlling the light and heat within the building, solar greenhouse, optical switch and other future applications. Also, the simplicity of the current structure makes it conducive to the industrial design using low-cost and massive product nanofabrication technique.

Keywords

Smart window Incident angle Interferences Transmission Solar heat 

PACS Nos.

78.20.Bh 78.67.Pt 42.70.Qs 77.90.+k 75.90.+w 

Notes

Acknowledgments

The authors would like to thank Prof. Macleod for offering us the Essential Macleod program to achieve this work.

References

  1. [1]
    R E Smalley MRS Bull. 30 412 (2005).Google Scholar
  2. [2]
    R Yao, V Costanzo, X Li, Q Zhang and B Li J. Build. Eng. 15 298 (2017).CrossRefGoogle Scholar
  3. [3]
    D Ürge-Vorsatz, L F Cabeza, S Serrano, C Barreneche and K Petrichenko Renew. Sustain. Energy Rev. 41 85 (2015)CrossRefGoogle Scholar
  4. [4]
    L Pérez-Lombard, J Ortiz and C Poutmation Energy Build. 40 3 394 (2008)CrossRefGoogle Scholar
  5. [5]
    I P Parkin and T D Manning Products of Chemistry Intelligent Thermochromic Windows 83 3 393 (2006)Google Scholar
  6. [6]
    A M Omer Renew. Sustain. Energy Rev. 12 2265(2008)CrossRefGoogle Scholar
  7. [7]
    U S DOE, Quadrennial-Technology-Review-2015_0.pdf, September 2015.Google Scholar
  8. [8]
    S D Rezaei, S Shannigrahi and S Ramakrishna Sol. Energy Mater. Sol. Cells 159 26 (2017)CrossRefGoogle Scholar
  9. [9]
    J S E M Svensson and C G Granqvist Sol. Energy Mater. 12 391 (1985)CrossRefGoogle Scholar
  10. [10]
    H Khandelwal, A P H J Schenning and M. G. Debije Adv. Energy Mater. 7 14 (2017)CrossRefGoogle Scholar
  11. [11]
    N DeForest et al. Build. Environ. 89 107 (2015)CrossRefGoogle Scholar
  12. [12]
    M Maaza et al. Opt. Mater. (Amst). 15 41 (2000)ADSCrossRefGoogle Scholar
  13. [13]
    C Lampert Sol. Energy Mater. Sol. Cells 52 207 (1998)Google Scholar
  14. [14]
    B Bera, A C M Esther, A Dey, A K Mukhopadhyay Indian J. Phys. 90 687 (2016)ADSCrossRefGoogle Scholar
  15. [15]
    M Shaban, M Rabia, S Ezzat, N Mansour and E Saeed J. Nanophotonics 12 16009 (2018)ADSCrossRefGoogle Scholar
  16. [16]
    A.H Aly, A A Ameen, and D Vigneswaran J. Supercond. Nov. Magn. 32 191 (2019)Google Scholar
  17. [17]
    X Tan et al. Sci. Rep. 2 1 (2012)CrossRefGoogle Scholar
  18. [18]
    X Xu, X Wu, C Zhao, J Wang and X Ge Sci. China Technol. Sci. 55 1999 (2012)CrossRefGoogle Scholar
  19. [19]
    G Kokogiannakis, J Darkwa and C. Aloisio Energy Procedia 62 22 (2014)CrossRefGoogle Scholar
  20. [20]
    P Yang, P Sun and W Mai Mater. Today 19 394 (2016)Google Scholar
  21. [21]
    C-K Wang, D R Sahu, S-C Wang, C-K Lin and J-L Huang J. Phys. D. Appl. Phys. 45 225303 (2012)ADSCrossRefGoogle Scholar
  22. [22]
    T Katase, T Onozato, M Hirono, T Mizuno and H Ohta Sci. Rep. 6 1 (2016)CrossRefGoogle Scholar
  23. [23]
    M Deepa, A Awadhia, S Bhandari and S L Agrawal Electrochim. Acta 53 7266 (2008)CrossRefGoogle Scholar
  24. [24]
    N Garino et al. Int. J. Electrochem. 2013 1 (2013)CrossRefGoogle Scholar
  25. [25]
  26. [26]
  27. [27]
  28. [28]
    E D Kosten, J H Atwater, J Parsons, A Polman and H A Atwater Light Sci. Appl. 2 1 (2013)CrossRefGoogle Scholar
  29. [29]
    Y Shen, D Ye, I Celanovic, S G Johnson, J D Joannopoulos and M Soljačić Science 343 1499 (2014)ADSCrossRefGoogle Scholar
  30. [30]
    R S Zakirullin Appl. Opt. 54 6416 (2015)ADSCrossRefGoogle Scholar
  31. [31]
    R S Zakirullin SPIE 9579 95790Q (2015)ADSGoogle Scholar
  32. [32]
    R S Zakirullin J. Opt. Technol. (A Transl. Opt. Zhurnal) 80 480 (2013)CrossRefGoogle Scholar
  33. [33]
    R S Zakirullin and S N Letuta Sol. Energy 120 585 (2015)ADSCrossRefGoogle Scholar
  34. [34]
    H I I Izuka and N A E Ngheta 41 16 23 (2016)Google Scholar
  35. [35]
    A. H. Aly and H. Sayed J. Nanophotonics 11 046020 (2017)ADSCrossRefGoogle Scholar
  36. [36]
    A. H. Aly, H. S Hanafey J. Comput. Theor. Nanosci. 8 1916 (2011)CrossRefGoogle Scholar
  37. [37]
    A. H. Aly, Mater. Chem. Phys. 115 391 (2009)CrossRefGoogle Scholar
  38. [38]
    M R Singh J. Phys. B: At. Mol. Opt. Phys. 42 065503 (9 pp) (2009)ADSCrossRefGoogle Scholar
  39. [39]
    A. H. Aly, A A Ameen, H A Elsayed, et al. One-Dimensional Metallo-Superconductor Photonic Crystals as a Smart Window. J Supercond Nov Magn (2019).  https://doi.org/10.1007/s10948-018-4978-z
  40. [40]
    J D Cox, M R Singh, C Racknor, R Agarwal Nano Lett. 11, 5284–5289 (2011)ADSCrossRefGoogle Scholar
  41. [41]
    C Yang et al. Sci. Rep. 5 1 (2015)Google Scholar
  42. [42]
    M F Schubert, J Q Xi, J K Kim and E F Schubert Appl. Phys. Lett. 90 1 2007CrossRefGoogle Scholar
  43. [43]
    J Q Xi et al. Nat. Photonics 1 176 (2007)ADSCrossRefGoogle Scholar
  44. [44]
    M Tabata I Adachi H Kawai, M Kubo and T Sato Phys. Procedia 37 642(2012)ADSCrossRefGoogle Scholar
  45. [45]
    M Tabata I Adachi Y Ishii H Kawai T Sumiyoshi and H Yokogawa Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 623 339(2010)CrossRefGoogle Scholar
  46. [46]
    G S Kim and S H Hyun J. Non. Cryst. Solids 320 125 (2003)ADSCrossRefGoogle Scholar
  47. [47]
    D J Poxson, F W Mont, M. F. Schubert and J. K. Kim, J. Cho and E. F. Schubert, Opt. Express 18 594 (2010)ADSCrossRefGoogle Scholar
  48. [48]
    H A MacLeod Thin-Film Optical Filters, 4th Edn. (Series in Optics and Optoelectronics, CRC Press, (2010)Google Scholar
  49. [49]
    E W Max Born, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) Edn. (Cambridge University Press) (2002)Google Scholar
  50. [50]
    A H Aly, S-W. Ryu and C-J Wu J. Nonlinear Opt. Phys. Mater. (JNOPM) 17 255 (2008)ADSCrossRefGoogle Scholar
  51. [51]
    A M Ahmed, M Shaban and A H Aly Optik 145 121(2017)ADSCrossRefGoogle Scholar
  52. [52]
    V Lousse, W Suh, O Kilic, S Kim, O Solgaard and S Fan Opt. Express 12 1575(2004)ADSCrossRefGoogle Scholar
  53. [53]
    W H Southwell Appl. Opt. 38 5464 (1999)Google Scholar
  54. [54]
    S J Byrnes, Multilayer optical calculations. arXiv:1603.02720 [physics.comp-ph] 1,2016
  55. [55]
    S P Ojha, Prog. Electromagn. Res. 80 431(2008)CrossRefGoogle Scholar
  56. [56]
    A. H. Aly, H.-T. Hsu, T.-J. Yang, C.-J. Wu and C. K. Hwangbo J. Appl. Phys. 105 083917-6 (2009)ADSCrossRefGoogle Scholar
  57. [57]
    M E Wober, C A Stover, L R Gilbert, T J Nevitt and A J Onderkirk Science 287 2451(2000)ADSCrossRefGoogle Scholar
  58. [58]
    Y-R Li, Y Sun and H-F Wang Analyst 140 3368 (2015)ADSCrossRefGoogle Scholar
  59. [59]
    E Armstrong and C O’Dwyer J. Mater. Chem. C 3 6109(2015)CrossRefGoogle Scholar
  60. [60]
    C López-López, S Colodrero, M E Calvo and H Míguez Energy Environ. Sci. 6 1260 (2013)CrossRefGoogle Scholar
  61. [61]
    M Shaban, A M Ahmed, E Abdel- Rahman and H Hamdy Micro Nano Lett. 11 295(2016)CrossRefGoogle Scholar
  62. [62]
    M Shaban, A M Ahmed, E Abdel-Rahman and H Hamdy Sci. Rep. 7 1 (2017)CrossRefGoogle Scholar
  63. [63]
    Z Todorova, N Donkov, Z Ristić, N Bundaleski, S Petrović and M Petkov Plasma Process. Polym. 3 174 (2006)CrossRefGoogle Scholar
  64. [64]
    E Çetinörgü, B Baloukas, O Zabeida, J E Klemberg-Sapieha and L Martinu Appl. Opt. 48 4536 (2009)ADSCrossRefGoogle Scholar
  65. [65]
    J L Plawsky, J K Kim, E F Schubert Mater. Today 12 36 (2009)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Arafa H. Aly
    • 1
    Email author
  • Ashour M. Ahmed
    • 2
  • Mohamed Shaban
    • 2
  1. 1.TH-PPM Group, Physics Department, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  2. 2.Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations