Advertisement

Fourth-order predictor–corrector FDM for computing the flow of a Newtonian fluid

  • M. M. KhaderEmail author
Original Paper
  • 14 Downloads

Abstract

There is a critical necessity for augmenting the accuracy of the solution of problem describing the fluid flow over an exponential stretching sheet to improve proficiently the process of heat transfer in numerous applications. For this purpose, an efficient fourth-order predictor–corrector finite difference method (FDM-4OPC) is implemented in this paper to present the numerical solution for the flow and heat transfer of a Newtonian fluid over an exponentially stretching porous sheet with constant heat flux, variable viscosity and internal heat generation. The technique of thermal radiation is also deliberated in this study. The countless features of the various parameters on both velocity and temperature components are schemed and introduced graphically as well as in tabular form. Further, the effect of the same governing parameters on skin-friction coefficient and Nusselt number is discussed in detail.

Keywords

Newtonian fluid Exponentially stretching sheet Variable viscosity Constant heat flux Fourth-order predictor–corrector FDM 

PACS Nos.

47.10.A- 47.85.-g 47.11.Bc 

Notes

References

  1. [1]
    M M Khader Commun. Nonlinear. Sci. Numer. Simul. 16 2535 (2011)ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    N H Sweilam, M M Khader and A M Nagy Comput. Appl. Math. 235 2832 (2011)MathSciNetCrossRefGoogle Scholar
  3. [3]
    H Johnston and J G Liu J. Comput. Phys. 180 120 (2002)ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    G D Smith Numerical Solution of Partial Differential Equations (Oxford University Press, Oxford, 1965)Google Scholar
  5. [5]
    L J Crane Z. Angew. Math. Phys. 21 645 (1970)CrossRefGoogle Scholar
  6. [6]
    P S Gupta and A S Gupta Can. J. Chem. Eng. 55 744 (1977)CrossRefGoogle Scholar
  7. [7]
    C K Chen and M I Char Math. Anal. Appl. 135 568-580 (1988)MathSciNetCrossRefGoogle Scholar
  8. [8]
    I Pop and T Y Na Mech. Res. Commun. 23 413 (1996)CrossRefGoogle Scholar
  9. [9]
    F T Akyildiz and D A Siginer Non-Linear Anal. Real World Appl. 11 735 (2010)CrossRefGoogle Scholar
  10. [10]
    A M Megahed Rheol. Acta 51 841 (2012)CrossRefGoogle Scholar
  11. [11]
    A Raptis Int. J. Heat Mass Transfer 41 2865 (1998)CrossRefGoogle Scholar
  12. [12]
    A Raptis Int. Commun. Heat Mass Transf. 26 889 (1999)CrossRefGoogle Scholar
  13. [13]
    A J Chamkha and A A Khaled Heat Mass Transf. 37 117 (2001)ADSCrossRefGoogle Scholar
  14. [14]
    R P Sharma, O D Makinde and I L Animasaun Defect Diffus. Forum 387 308 (2018)CrossRefGoogle Scholar
  15. [15]
    F Mabood, S M Ibrahim and G Lorenzini J. Eng. Thermophys. 26(3) 399 (2017)CrossRefGoogle Scholar
  16. [16]
    P M Krishna, N Sandeep and R P Sharma Eur. Phys. J. Plus 132(202) 1 (2017)Google Scholar
  17. [17]
    R P Sharma, P V S N Murthy and K Devendra J. Nanofluids 6(1) 80 (2017)CrossRefGoogle Scholar
  18. [18]
    R P Sharma, K Avinash, N Sandeep and O D Makinde Defect Diffus. Forum 377 242 (2017)CrossRefGoogle Scholar
  19. [19]
    S R Mishra, B Nayak and R P Sharma Defect Diffus. Forum 374 92 (2017)CrossRefGoogle Scholar
  20. [20]
    K Das and R P Sharma J. Comput. Des. Eng. 3 330 (2016)Google Scholar
  21. [21]
    P D Ariel Comput. Methods Appl. Mech. Eng. 142 111 (1997)ADSCrossRefGoogle Scholar
  22. [22]
    M M Khader and M Adel Adv. Differ. Equ. 2016 1 (2016)CrossRefGoogle Scholar
  23. [23]
    A M T Seyed, A Ramin and K Reza Math. Probl. Eng. 2012 1 (2012)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Statistics, College of ScienceImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceBenha UniversityBenhaEgypt

Personalised recommendations