Advertisement

Energies, wavelengths, and transition rates for Ge-like Mo, Ru, and Rh ions

  • Lianlian Sun
  • Miao Wu
  • Gang JiangEmail author
OriginalPaper
  • 16 Downloads

Abstract

The energy levels, wavelengths, transition rates, and oscillator strengths have been calculated for the fine-structure levels of the 4s24p2, 4s4p3, 4s24p4d, and 4p4 configurations in Ge-like Mo, Ru, and Rh ions. The fully relativistic multiconfiguration Dirac–Hartree–Fock method, taking correlations within the n = 8 complex, the Breit interaction and the quantum electrodynamics effects into consideration have been used in the calculations. Valence and core–valence electron correlation effects are accounted for through single–double multireference (SD-MR) expansions to increasing sets of active orbitals. Our results are compared with available experimental and other theoretical results, and a good agreement is obtained.

Keywords

Multiconfiguration Dirac–Hartree–Fock Energy levels Wavelengths Transition rates Oscillator strengths 

PACS Nos.

31.10. +z 74.25.Jb 32.10.Fn 32.70.Cs 

Notes

Acknowledgements

The authors express sincere appreciation to P Jönsson for providing the Grasp2k program for free. This work was supported by the National Natural Science Foundation of China (Grant No. 11474208).

References

  1. [1]
    J D Gillaspy J. Phys. B At. Mol. Opt. Phys. 34 R93 (2001)ADSCrossRefGoogle Scholar
  2. [2]
    D A Liedahl, G Ferland and D W Savin ASP Conf. Ser. 247 417 (2001)ADSGoogle Scholar
  3. [3]
    R Radtke, C Biedermann, J L Schwob, P Mandelbaum and R Doron Phys. Rev. A 64 12720 (2001)ADSCrossRefGoogle Scholar
  4. [4]
    C Biedermann, R Radtke, J L Schwob, P Mandelbaum, R Doron, T Fuchs and G Fußmann Phys. Scr. 2001 85 (2001)Google Scholar
  5. [5]
    K Asmussen, K B Fournier, J M Laming, R Neu, J F Seely, R Dux, W Engelhardt, J C Fuchs and ASDEX Upgrade Team Nucl. Fusion 38 967 (1998)ADSCrossRefGoogle Scholar
  6. [6]
    P Dunne, P K Carroll, R E Corcoran, J T Costello and G O’Sullivan J. Phys. B At. Mol. Opt. Phys. 23 L239 (1990)ADSCrossRefGoogle Scholar
  7. [7]
    U Litzén and X Zeng J. Phys. B At. Mol. Opt. Phys. 24 L45 (1991)ADSCrossRefGoogle Scholar
  8. [8]
    U Litzén and J Reader Phys. Scr. 39 468 (1989)ADSCrossRefGoogle Scholar
  9. [9]
    K Rahimullah, M S Z Chaghtai and S Khatoon Phys. Scr. 14 221 (1976)ADSCrossRefGoogle Scholar
  10. [10]
    K Rahimullah, M S Z Chaghtai and S Khatoon Phys. Scr. 18 96 (1978)ADSCrossRefGoogle Scholar
  11. [11]
    G O’Sullivan, J T Costellof, M Kanet and P K Carrollt J. Phys. B At. Mol. Opt. Phys. 21 L195 (1988)CrossRefGoogle Scholar
  12. [12]
    C Suzuki, T Kato, H A Sakaue, D Kato, K Sato, N Tamura, S Sudo, N Yamamoto, H Tanuma, H Ohashi, R Darcy and G O’Sullivan J. Phys. B At. Mol. Opt. Phys. 43 74027 (2010)CrossRefGoogle Scholar
  13. [13]
    C Biedermann, R Radtke, G Fußmann, J L Schwob and P Mandelbaum Nucl. Instrum. Methods Phys. Res. B 235 126 (2005)ADSCrossRefGoogle Scholar
  14. [14]
    M S Z Chaghtai, Z A Khan and K Rahimullah J. Phys. B At. Mol. Phys. 13 2523(1980)ADSCrossRefGoogle Scholar
  15. [15]
    A Tauheed and Hala Phys. Scr. 85 055301 (2012)ADSCrossRefGoogle Scholar
  16. [16]
    R D’Arcy, H Ohashi, S Suda, H Tanuma, S Fujioka, H Nishimura, K Nishihara, C Suzuki, T Kato, F Koike, A O’Connor and G O’Sullivan J. Phys. B At. Mol. Opt. Phys. 42 165207 (2009)ADSCrossRefGoogle Scholar
  17. [17]
    H Ohashi, S Suda, H Tanuma, S Fujioka, H Nishimura, A Sasaki and K Nishihara J. Phys. B At. Mol. Opt. Phys. 43 065204 (2010)ADSCrossRefGoogle Scholar
  18. [18]
    E Biémont, A El Himdy and H P Garnir J. Quant. Spectrosc. Radiat. Transfer. 43 437 (1990)ADSCrossRefGoogle Scholar
  19. [19]
    A Wajid and S Jabeen J. At. Mol. Condens. Nano Phys. 3 1–16 (2016).Google Scholar
  20. [20]
    P Palmeri, P Quinet, É Biémont and E Trabert At. Data Nucl. Data Tables 93 355 (2007)ADSCrossRefGoogle Scholar
  21. [21]
    O Nagy and F El-Sayed At. Data Nucl. Data Tables 98 373 (2012)ADSCrossRefGoogle Scholar
  22. [22]
    Z B Chen and K Wang At. Data Nucl. Data Tables 114 61 (2017)ADSCrossRefGoogle Scholar
  23. [23]
    L H Hao, X P Kang and J J Liu J. Appl. Spectrosc. 84 351 (2017)ADSCrossRefGoogle Scholar
  24. [24]
    I P Grant Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) p 384 (2007)CrossRefGoogle Scholar
  25. [25]
    P Jönsson, X He, C F Fischer and I P Grant Comput. Phys. Commun. 177 597 (2007)ADSCrossRefGoogle Scholar
  26. [26]
    J G Li, C Z Dong and X B Ding Chin. Phys. Lett. 24 83 (2007)ADSCrossRefGoogle Scholar
  27. [27]
    L H Hao and X P Kang Eur. Phys. J. D 68 203 (2014)ADSCrossRefGoogle Scholar
  28. [28]
    F Hu, G Jiang, J M Yang, C K Wang, X F Zhao and L H Hao Eur. Phys. J. D 61 15 (2011)ADSCrossRefGoogle Scholar
  29. [29]
    L Hao, G Jiang, S Song and F Hu At. Data Nucl. Data Tables 94 739 (2008)ADSCrossRefGoogle Scholar
  30. [30]
    C F Fischer, T Brage and P Jonsson Computional Atomic StructureAn MCHF Approach (Bristol: Institute of Physics Publishing) (1997)zbMATHGoogle Scholar
  31. [31]
    P Jonsson, G Gaigalas, J Bieron, C F Fischer and I P Grant Comput. Phys. Commun. 184 2197 (2013)ADSCrossRefGoogle Scholar
  32. [32]
    F A Parpia, C F Fischer and I P Grant Comput. Phys. Commun. 94 249 (1996)ADSCrossRefGoogle Scholar
  33. [33]
    J Olsen, M R Godefroid, P Jönsson, P Å Malmqvist and C F Fischer Phys. Rev. E 52 4499 (1995)ADSCrossRefGoogle Scholar
  34. [34]
    C F Fischer Phys. Scr. T134 014019 (2009)ADSCrossRefGoogle Scholar
  35. [35]
    J Ekman, M R Godefroid and H Hartman Atoms 2 215 (2014)ADSCrossRefGoogle Scholar
  36. [36]
    F Hu, J M Yang, C K Wang, L F Jing, S B Chen, G Jiang, H Liu and L H Hao Phys. Rev. A 84 042506 (2011)ADSCrossRefGoogle Scholar
  37. [37]
    L H Hao, G Jiang and H J Hou Phys. Rev. A 81 022502 (2010)ADSCrossRefGoogle Scholar
  38. [38]
    G Gaigalas, T Žalandauskas and Z Rudzikas At. Data Nucl. Data Tables 84 99 (2003)ADSCrossRefGoogle Scholar
  39. [39]
    G Gaigalas, C Fischer, P Rynkun and P Jönsson Atoms 5 6 (2017)ADSCrossRefGoogle Scholar
  40. [40]
    S Gustafsson, P Jönsson, C F Fischer and I P Grant Astron. Astrophys. 597 A76 (2017)CrossRefGoogle Scholar
  41. [41]
    A Kramida, Y Ralchenko, J Reader and NIST ASD Team NIST Atomic Spectra Database (ver. 5.3) [Online]. Available: http://physics.nist.gov/asd [2016, July. 29]. (Gaithersburg, MD: National Institute of Standards and Technology) (2015).
  42. [42]
    W Zhang, P Palmeri, P Quinet and É Biémont Astron. Astrophys. 551 A136 (2013)ADSCrossRefGoogle Scholar
  43. [43]
    P Jönsson, L Radžiute, G Gaigalas, M R Godefroid, J P Marques, T Brage, C F Fischer and I P Grant Astron. Astrophys. 585 A26 (2016)Google Scholar
  44. [44]
    B J Mckenzie, I P Grant and P H Norrington Comput. Phys. Commun. 21 233 (1980)ADSCrossRefGoogle Scholar
  45. [45]
    I Khatria, A Goyala, S Aggarwal, A K Singhb and M Mohana Chin. Phys. B. 24 103202 (2015)CrossRefGoogle Scholar
  46. [46]
    X B Ding, R Sun, F Koike, D Kato, I Murakami, H A Sakaue and C Z Dong Eur. Phys. J. D 71 73 (2017)ADSCrossRefGoogle Scholar
  47. [47]
    P Jönsson, J Ekman and E Träbert. Atoms 3 195 (2015)ADSCrossRefGoogle Scholar
  48. [48]
    P Bogdanovic, R Karpuškiene and O Rancova Phys. Scr. 75 669 (2007)ADSCrossRefGoogle Scholar
  49. [49]
    J Ekman, M R Godefroid and H Hartma Atoms 2 215 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Public Course TeachingAnhui Xinhua UniversityHefeiPeople’s Republic of China
  3. 3.The Key Laboratory of High Energy Density Physics and TechnologyMinistry of EducationChengduPeople’s Republic of China

Personalised recommendations