Investigation of structural and electrical properties of pristine and 200 MeV Ag15+ ion irradiated 3 wt% ‘Li’ doped WO3 thin films

  • R. Rathika
  • M. KovendhanEmail author
  • D. Paul Joseph
  • C. Venkateswaran
  • K. Asokan
  • S. Johnson JeyakumarEmail author
Original Paper


Swift Heavy Ion (SHI) beam irradiation has been used as an experimental technique to modify the material properties through the interaction of the ion beam with the target material. In this work, the properties of the pristine and 200 MeV Ag15+ ion beam irradiated lithium (3 wt%) doped WO3 (tungsten trioxide) thin films are reported. These thin films were spray deposited onto ITO coated glass substrates at 400 °C with thickness around 55 nm and irradiated with the 200 MeV Ag15+ ion beam at a fluence of 5 × 1012 ions/cm2. The XRD pattern of pristine film confirmed textured growth along the (211) plane with tetragonal phase, while the irradiated film was partially amorphous. Raman modes at higher wavenumbers 708 cm−1 and 806 cm−1 belong to W–O stretching modes, whereas modes at lower wavenumbers 133 cm−1 belong to lattice mode and 265 cm−1 are associated with W–O bending modes for pristine film. Upon irradiation, all the Raman modes vanished due to irradiation induced amorphization. The optical transparency of the film upon irradiation decreased significantly, and band gaps showed a red shift. The atomic force microscopy (AFM) images of pristine film surfaces were homogeneous, smooth and free from holes with small grains, whereas ion irradiated films exhibited isolated flattened particles of varying size on the surface. Room temperature transport properties were also measured using Hall effect for both the pristine and irradiated films.


Irradiation WO3 thin film Raman Indirect band gap Hall effect 


61.80.Lj 61.80.-x 78.30.Am 78.30.Fs 42.70.Qs 73.50.Jt 



The authors thank the Inter University Accelerator Centre (IUAC), New Delhi, for providing access to the irradiation facility.


  1. [1]
    J L Solis, S Saukko, L Kisha, C G Granqvist and V Lantto Thin Solid Films 391 255 (2001).ADSCrossRefGoogle Scholar
  2. [2]
    M Stankova, X Vilanova, E Llobet, J Calderer, C Bittencourt, J J Pireaux, et al. Sens. Actuators B. Chem. 105 271 (2005).CrossRefGoogle Scholar
  3. [3]
    S K Gullapalli, R S Vemuri, F S Manciu, J L Enriquez and C V Ramana J. Vac. Sci. Technol. A 28 824 (2010).CrossRefGoogle Scholar
  4. [4]
    M Deepa, P Singh, S N Sharma and S A Agnihotry Sol. Energy Mater. Sol. Cells 90 2665 (2006).CrossRefGoogle Scholar
  5. [5]
    A Cremonesi, D Bersani, P P Lottici, Y Djaoued, and P V Ashrit J. Non Cryst. Solids 345 500 (2004).ADSCrossRefGoogle Scholar
  6. [6]
    J M O-Rueda de León, D R Acosta, U Pal and L Castaneda Electrochim. Acta 56 2599 (2011).CrossRefGoogle Scholar
  7. [7]
    B W Faughnan and R S Crandall Topics in Applied Physics 40 (ed.) J F Pankow (Springer, Berlin, Heidelberg) p 181 (1980).Google Scholar
  8. [8]
    F Li, S Ruan, Y Xu, F Meng, J Wang, W Chen and L Shen Sol. Energy Mater. Sol. Cells 95 877 (2011).CrossRefGoogle Scholar
  9. [9]
    G W Ho, K J Chua and D R Siow Chem. Eng. J. 181 661 (2012).CrossRefGoogle Scholar
  10. [10]
    J M Foley, M J Price, J I Feldblyum and S. Maldonado Energy Environ. Sci. 5 5203 (2012).CrossRefGoogle Scholar
  11. [11]
    E B Franke, C L Trimble, J S Hale, M Schubert, J A Woollam J. Appl. Phys. 88 5777 (2000).ADSCrossRefGoogle Scholar
  12. [12]
    F Liu, X Chen, Q Xia, L Tian and X Chen RSC Adv. 5 77423 (2015).CrossRefGoogle Scholar
  13. [13]
    A Rougier, F Portemer, A Quedé, and M El Marssi Appl. Surf. Sci. 153 1 (1999).ADSCrossRefGoogle Scholar
  14. [14]
    M F Daniel, B Desbat, and J C Lassegues J. Solid State Chem. 73 127 (1988).ADSCrossRefGoogle Scholar
  15. [15]
    C Santato, M Odziemkowski, M Ulmann, and J Augustynski J. Am. Chem. Soc. 123 10639 (2001).CrossRefGoogle Scholar
  16. [16]
    R Solarska, B D Alexander, A Braun, R Jurczakowski, G Fortunato, M Stiefel, et al. Electrochim. Acta 55 7780 (2004).CrossRefGoogle Scholar
  17. [17]
    K Kajihara, N Nakanishi, K Tanaka, K Hirco and N Soga J. Am. Ceram. Soc. 81 2670 (1998).CrossRefGoogle Scholar
  18. [18]
    V Hariharan, S Radhakrishnan, M Parthibavarman, R Dhilipkumar and C Sekar Talanta 85 2166 (2011).CrossRefGoogle Scholar
  19. [19]
    P S Patil (1999) Mater. Chem. Phys. 59 185.ADSCrossRefGoogle Scholar
  20. [20]
    R Sivakumar, A M E Raj, B Subramanian, M Jayachandran, D C Trivedi and C Sanjeeviraja Mater. Res. Bull. 39 1479 (2004).CrossRefGoogle Scholar
  21. [21]
    L M Manceriu, A Rougier, A Duta J. Alloy Compd. 630 133 (2015).CrossRefGoogle Scholar
  22. [22]
    S M Harshulkhan, K Janaki, G Velraj, R S Ganapathy and S Krishnaraj J. Mater. Sci. Mater. Electron. 27(4) 3158 (2016).CrossRefGoogle Scholar
  23. [23]
    S R Bathe and P S Patil Solid State Ion. 179 314 (2008).CrossRefGoogle Scholar
  24. [24]
    J Gaury, E M Kelder, E Bychkov and G Biskos Thin Solid Films 534 32 (2013).ADSCrossRefGoogle Scholar
  25. [25]
    Ramnayan Mukherjee, C S Prajapati and P P Sahay J. Mater. Eng. Perform. 23 3141 (2014).CrossRefGoogle Scholar
  26. [26]
    P Maruthamuthu and M A Kumar Sol. Energy Mat. 17 433 (1988).CrossRefGoogle Scholar
  27. [27]
    S-H Lee, H M Cheong, C E Tracy, A Mascarenhas, A W Czanderna and S K Deb Appl. Phys. Lett. 75 1541 (1999).Google Scholar
  28. [28]
    A V Krasheninnikov and K Nordlund J. Appl. Phys. 107 071301 (2010).ADSCrossRefGoogle Scholar
  29. [29]
    IP Jain and G Agarwal Surf. Sci. Rep. 66 77 (2011).ADSCrossRefGoogle Scholar
  30. [30]
    E O Zayim and N D Baydogan Sol. Energ. Mat. Sol. Cells 90 402 (2006).CrossRefGoogle Scholar
  31. [31]
    S Furuno, H Otsu, K Hojou and K Izui Nucl. Instr. Methods Phys. Res. B 107 223 (1996).ADSCrossRefGoogle Scholar
  32. [32]
    S Bayan and D Mohanta Nucl. Instr. Methods Phys. Res. B 269 374 (2011).ADSCrossRefGoogle Scholar
  33. [33]
    P Sharma, M Vashistha and I P Jain Opt. Mater. 27 395 (2004).Google Scholar
  34. [34]
    H K Singh, D K Avasthi and S Aggarwal Nucl. Instr. Methods Phys. Res. B 353 35 (2015).CrossRefGoogle Scholar
  35. [35]
    P Sudhagar, K Asokan, J H Jung, Y-G Lee, S Park and Y S Kang Nanoscale Res. Lett. 6 30 (2011).Google Scholar
  36. [36]
    M Kovendhan, D P Joseph, E S Kumar, A Sendilkumar, P Manimuthu, S Sambasivam et al. Appl. Surf. Sci. 257 8127 (2011).ADSCrossRefGoogle Scholar
  37. [37]
  38. [38]
    A Solanki, J Shrivastava, S Upadhyay, V Sharma, P Sharma, P Kumar et al. Int. J. Hydrogen Energy 36 5236 (2011).CrossRefGoogle Scholar
  39. [39]
    K J Lethy, S Potdar, V P M Pillai and V Ganesan J. Phys. D Appl. Phys. 42 095412 (2009).ADSCrossRefGoogle Scholar
  40. [40]
    K Zak, W H Abd Majid, M E Abrishami and R Yousefi Solid State Sci. 13 251 (2011).Google Scholar
  41. [41]
    M V Santhosh, D R Deepu, R Geethu, K R Kumar, C S Kartha and K P Vijayakumar Semicond. Sci. Technol. 29 115026 (2014).ADSGoogle Scholar
  42. [42]
    M Z Butt, D Ali, M Aftab and M U Tanveer Surf. Topogr. Metrol. Prop. 3 035002 (2015).Google Scholar
  43. [43]
    S T Tan, B J Chen, X W Sun, W J Fan, H S Kwok, X H Zhang and S J Chua J. Appl. Phys. 98 013505 (2005).ADSCrossRefGoogle Scholar
  44. [44]
    V Siva, S S Sahu, D P Datta, P C Pradhan, M Nayak, V Solanki et al. J. Alloys Compd. 680 722 (2016).CrossRefGoogle Scholar
  45. [45]
    W Wu, Q Yu, J Lian, J Bao, Z Liu and S-S Pei J. Cryst. Growth 312 3147 (2010).ADSCrossRefGoogle Scholar
  46. [46]
    S K Gautam, A Chettah, R G Singh, S Ojha and F Singh Nucl. Instr. Methods Phys. Res. B 379 224 (2016).ADSCrossRefGoogle Scholar
  47. [47]
    S Chandramohan, R Sathyamoorthy and K Asokan Nucl. Instr. Methods Phys. Res. B 254 236 (2007).ADSCrossRefGoogle Scholar
  48. [48]
    S Sorieul, J-M Costantini, L Gosmain, G Calas, J-J Grob and L Thomé J. Phys.: Condens. Matter. 18 8493 (2006).ADSGoogle Scholar
  49. [49]
    R Kumaravel, K Ramamurthi, I Sulania and K Asokan Radiat. Phys. Chem. 80 435 (2011).ADSCrossRefGoogle Scholar
  50. [50]
    M Kovendhan, D P Joseph, P Manimuthu, S Ganesan, S Sambasivam, P Maruthamuthu et al. Trans. IIM 64 185 (2011).Google Scholar
  51. [51]
    M Kovendhan, D P Joseph, P Manimuthu, S Sambasivam, S N Karthick, K Vijayarangamuthu et al. Appl. Surf. Sci. 284 624 (2013).ADSCrossRefGoogle Scholar
  52. [52]
    S K Deb Philos. Mag. 27 801 (1973).ADSCrossRefGoogle Scholar
  53. [53]
    J Tauc, R Grigorovici and A Vancu Phys. Stat. Sol. 15, 627 (1966).ADSCrossRefGoogle Scholar
  54. [54]
    F A Mir and K M Batoo Appl. Phys. A 122 418 (2016).ADSCrossRefGoogle Scholar
  55. [55]
    R Chauhana, A Tripathi, A K Srivastava and K K Srivastava Chalcogenide Lett. 10(2) 63 (2013).Google Scholar
  56. [56]
    H A Khawal, U P Gawai, K Asokan and B N Dole RSC Adv. 6 49068 (2016).CrossRefGoogle Scholar
  57. [57]
    M Toulemonde, C Trautmann, E Balanzat, K Hjort and A Weidinger Nucl. Instr. Methods Phys. Res. B 216 1 (2004).ADSCrossRefGoogle Scholar
  58. [58]
    A E Volkov and V A Borodin Nucl. Instr. Methods Phys. Res. B 193 381 (2002).ADSCrossRefGoogle Scholar
  59. [59]
    A A Sagade, N G Deshpande, S D Chavhan, R P Sharma, D K Avasthi, F Singh, et al. Radiat. Eff. Defect S 162 77 (2007).CrossRefGoogle Scholar
  60. [60]
    D E Alexander and G S Was Phys. Rev. B 47 2983 (1993).ADSCrossRefGoogle Scholar
  61. [61]
    Y S Chaudhary, S A Khan, R Shrivastav, V R Satsangi, S Prakash, D K Avasthi, S Dass, Nucl. Instr. Methods Phys. Res. B 225 291 (2004).ADSCrossRefGoogle Scholar
  62. [62]
    A G S Kumar, S Sarmash, D J Rani, T S Rao and K Asokan Thin Solid Films 605 102 (2016).Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of PhysicsTBML CollegePorayarIndia
  2. 2.Department of Environmental EngineeringInha UniversityIncheonSouth Korea
  3. 3.Department of PhysicsNational Institute of TechnologyWarangalIndia
  4. 4.Department of Nuclear PhysicsUniversity of Madras, Guindy CampusChennaiIndia
  5. 5.Inter university Accelerator CentreNew DelhiIndia

Personalised recommendations