Advertisement

Effect of gravity, magnetic field and internal heat source on a fiber-reinforced medium with two temperatures

  • Samia M. Said
  • Mohamed I. A. OthmanEmail author
Original Paper

Abstract

In the present paper, the Lord–Shulman theory with one relaxation time, Green–Lindsay theory with two relaxation times and the classical dynamical coupled theory as well as Green–Naghdi theory without energy dissipation are applied to study the total deformation of a magneto-thermoelastic fiber-reinforced medium under the gravitational. The normal mode analysis is used to obtain the exact expressions for the thermodynamic temperature, the conductive temperature, the force stresses and the displacements. Comparisons are made with the results in the four theories in the presence and absence of magnetic field, the gravity, as well as the internal heat source. The effect of the gravity, magnetic field and the internal heat source is observed on all the quantities.

Keywords

Magnetic field Gravity Two temperatures Fiber-reinforced Green–Lindsay Lord–Shulman Green–Naghdi 

PACS Nos.

44.05.+e 81.40.Jj 62.20.fq 62.20.Dc 62.40.+i 

Notes

References

  1. 1.
    P J Chen and M E Gurtin ZAMP 19 614 (1968)ADSGoogle Scholar
  2. 2.
    P J Chen and W O Williams ZAMP 19 969 (1968)ADSGoogle Scholar
  3. 3.
    P J Chen, M E Gurtin and W O Williams ZAMP 20 107 (1969)Google Scholar
  4. 4.
    W E Warren and P J Chen Acta Mechanica 16 21 (1973)CrossRefGoogle Scholar
  5. 5.
    H M Youssef IMA J. Appl. Math. 71 383 (2006)Google Scholar
  6. 6.
    P Puri and P M Jordan Int. J. Eng. Sci. 44 1113 (2006)CrossRefGoogle Scholar
  7. 7.
    S M Said and M I A Othman Archives of Thermodynamics 39 15 (2018)Google Scholar
  8. 8.
    R Kumar and S Mukhopadhyay Int. J. Eng. Sci. 48 128 (2010)CrossRefGoogle Scholar
  9. 9.
    P Das and M Kanoria Int. J. Pure. Appl. Math. 81 199 (2012)Google Scholar
  10. 10.
    M I A Othman, W M Hasona and E M Abd-Elaziz Can. J. Phys. 92 149 (2014)ADSGoogle Scholar
  11. 11.
    M A Biot J. Appl. Phys. 27 240 (1956)Google Scholar
  12. 12.
    H W Lord and Y Shulman J. Mech. Phys. Solid 15 299 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    A E Green and K A Lindsay J. Elast. 2 1 (1972)CrossRefGoogle Scholar
  14. 14.
    R B Hetnarski and J Ignaczak J. Therm. Stress. 17 377 (1994)CrossRefGoogle Scholar
  15. 15.
    A E Green and P M Naghdi J. Elast. 31 189 (1993)CrossRefGoogle Scholar
  16. 16.
    A Bagri and M R Eslami J. Therm. Stress. 27 691 (2004)CrossRefGoogle Scholar
  17. 17.
    M I A Othman and S Y Atwa Mech. of Adv. Materials and Struct. 21 697 (2014)CrossRefGoogle Scholar
  18. 18.
    M I A Othman and S M Said Mech. of Adv. Materials and Struct. 22 168 (2015)CrossRefGoogle Scholar
  19. 19.
    M I A Othman and S M Said Int. J. Thermophys. 33 1082 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M I A Othman, Y D Elmaklizi and S M Said Int. J. Thermophys. 34 521 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M I A Othman, M E M Zidan and M I M Hilal J. Therm. Stress. 38 835 (2015)CrossRefGoogle Scholar
  22. 22.
    M I A Othman, A Jahangir and A Nadia J. the Brazilian Soci. of Mech. Sci. and Eng. 40 332 (2018)Google Scholar
  23. 23.
    A J Belfield, T G Rogers and A I M Spencer J. Mech. Phys. Solids 31 25 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    P R Sengupta and S Nath Sãdhanã 26 363 (2001)Google Scholar
  25. 25.
    S M Said and M I A Othman Mech. Time-Dependent Materials, 21 245 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    S M Said and M I A Othman Struct. Eng. and Mech., An Int. J. 57 201 (2016)Google Scholar
  27. 27.
    M I A Othman and S Y Atwa Meccanica 49 23 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M M Bhatti, A Zeeshan, D Tripathi and R Ellahi Ind. J. Phys. 92 423 (2018)Google Scholar
  29. 29.
    M M Bhatti, A Zeeshan, R Ellahi and G C Shit Advanced Powder Technology 29 1189 (2018)CrossRefGoogle Scholar
  30. 30.
    R Ellahi, A Zeeshan, N Shehzad and S Z Alamri J. Molecular Liquids 264 607 (2018)CrossRefGoogle Scholar
  31. 31.
    A Majeed, A Zeeshan, S Z Alamri and R Ellahi Neural Comput. and Appl. 30 1947 (2018)Google Scholar
  32. 32.
    M Sheikholeslami Journal of Molecular Liquids 263 472 (2018)Google Scholar
  33. 33.
    M Sheikholeslami, S A Shehzad, Z Li and A Shafee Int. J. Heat and Mass Transfer 127 614 (2018)CrossRefGoogle Scholar
  34. 34.
    M Sheikholeslami Journal of Molecular Liquids 263 303 (2018)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt
  2. 2.Department of Mathematics, Faculty of Science and Arts, Al-MithnabQassim UniversityBuridah, Al-MithnabKingdom of Saudi Arabia

Personalised recommendations