Indian Journal of Physics

, Volume 93, Issue 9, pp 1163–1170 | Cite as

Construction of solvable non-central potential using vector superpotential: a new approach

  • Rajendrasinh H. ParmarEmail author
Original Paper


We introduce here vector superpotential which is useful to find general potential form using supersymmetric quantum mechanics (SUSY QM) approach. Using the vector superpotential, we reconstruct different solved central potentials and non-central shape variant or shape invariant potentials. To construct and reconstruct the central potentials and non-central potentials, appropriate choice of radial part of the superpotential as well as angular and azimuthal parts of the superpotential is required. Our main aim is to construct angular and azimuthal parts of potential directly from the appropriate choice of vector superpotential. We have reconstructed few potentials which are solved by different researchers using different methods of solution and also constructed new non-central potentials.


Vector superpotential Central potential Non-central potential Ring-shaped potential 


03.65Ca 03.65.-w 



We thank Prof. Dr. P C Vinodkumar, head of the Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, and Dr. J N Pandya, Applied Physics Department, M S University of Baroda for their valuable suggestions to enrich this paper.


  1. 1.
    F Cooper, A Khare and U Sukhatme Phys Rep. 251 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Z Q Ma and B W Xu Euro Phys. Lett. 69 685 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A Sidhanta IOSR J. Appl. Phys. (IOSR-JAP) 9 33 ( 2017)Google Scholar
  4. 4.
    O Bayrak, I Boztosun and H Ciftci Int. J. Quantum Chem. 107 540 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M R Setare and E Karimi Phys. Scr. 75 90 (2007)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A F Nikiforov and V B Uvarov Special Functions of Mathematical Physics (Basel: Birkhauser) (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    R J Le Roy and R B Bernstein J. Chem. Phys. 52 3869 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    S M Ikhdair and R Sever Int. J. Mod. Phys. C 19 02 (2007)Google Scholar
  9. 9.
    A Durmus and F Yasuk J. Chem. Phys. 126 074108 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    A A Makarov, J A Smorodinsky, K H Valiev and P Winternitz Nuovo Cimento A 521061 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    E Fues Ann. Phys. 80 367 (1926)CrossRefGoogle Scholar
  12. 12.
    H Quan, X L Guang, W Z Min, N L Bin and M Yan Commun. Theor. Phys. 53 242 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S H Dong, G H Sun and M Lozada-Cassou Phys. Lett. A 328 299 (2004)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C Cari, A Suparmi, M Yunianto and B N Pratiwi J. Phys. Conf. Ser. 776 012092 (2016)CrossRefGoogle Scholar
  15. 15.
    A Suparmi, C Cari, J Handhika and C Yanuarief J. Phys. Conf. Ser. 423 012039 (2013)CrossRefGoogle Scholar
  16. 16.
    H Hartmann Theor. Chim. Acta 2 4 201 (1972)CrossRefGoogle Scholar
  17. 17.
    A A Rajabi and M A Hamzavi J. Theor. Appl. Phys. 7 17 (2017)CrossRefGoogle Scholar
  18. 18.
    A D Antia and O P Akpan J. Appl. Theor. Phys. Res. 1(2) 9 (2017)Google Scholar
  19. 19.
    C Y Chen, Y You, X H Wang and S H Dong Phys. Lett. A 377 1521 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S H Dong, G H Sun and M Lozada-Cassou Phys. Letts. A 340 94 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    H I Ahmadov, C Aydin, N S Huseynova and O Uzun Int. J. Mod. Phys. E 22 1350072 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A I Ahmadov, C Aydin and O Uzun Int. J. Mod. Phys. A 29 1450002 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    A N Ikot, I O Akpan, T M Abbey and H Hassanabadi Commun. Theor. Phys. 65 569 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    A N Ikot, T M Abbey, E O Chukwuocha and M C Onyeaju Can. J. Phys. 94 517 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    A I Ahmadov, M Naeem, M V Qocayeva and V A Tarverdiyeva Int. J. Mod. Phys. A 33 1850021 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    H I Ahmadov, Sh I Jafarzad and M V Qocayeva Int. J. Mod. Phys. A 30 1550193 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    H I Ahmadov, M V Qocayeva and N Sh Huseynova Int. J. Mod. Phys. E 26 1750028 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    V A Kostelecky and D K Campbell Physica D 15 3 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    R H Parmar Ph.D. Thesis (S P University, V V Nagar, India) (2002)Google Scholar
  30. 30.
    A Arda and R Sever J. Math. Chem. 50 1484 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    J Sadeghia and B Pourhassa EJTP 5 193 (2008)Google Scholar
  32. 32.
    G G Blado Int. J. Quantum Chem. 58 431 (1996)CrossRefGoogle Scholar
  33. 33.
    C Cari and A Suparmi Indones. J. Appl. Phys. 4 1 (2014)Google Scholar
  34. 34.
    M C Zhang and G Q Huang-Fu J. Math. Phys. 52 053518 (2011)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    C A Berkdemir J. Math. Chem. 46 139 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    C A Berkdemir and Y F Cheng Phys. Scr. 79 034003 (2009)CrossRefGoogle Scholar
  37. 37.
    M C Zhang, G Q Huang-Fu and and A Bo Phys. Scr. 80 065018 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of PhysicsSir P T Science CollegeModasaIndia

Personalised recommendations