Precise estimation of doping-dependent Raman effect in inorganic solids

  • Andrew Das ArulsamyEmail author
Original Paper


Here we solve the problem of estimating the Raman frequency shift and the changes to Raman peak intensity due to doping (or changing chemical composition) and temperature consistently. The formalism employed to derive the temperature and doping-dependent Raman intensity ratio [or the ionization energy theory (IET)-based Raman intensity ratio] formula is based on the IET and the energy-level spacing renormalization group method. Therefore, our formalism is entirely based on first principles that does not require any guessed wavefunction nor intrinsic adjustable parameter anywhere in our analysis. The IET-Raman theory is then applied to Si(111), CdS, CdSe, \(\text{Cd}_{1-x}\text{Ca}_x\text{TiO}_3\) and 6H–SiC in order to expose the changes observed in the Raman spectra with respect to their peak intensity and frequency shift. We shall prove and highlight that the experimental Raman spectra obtained for the above-stated materials obey the physicochemical mechanism derived from the IET-Raman intensity formula unambiguously and without any exception. It is worth noting that the said formula can be implemented in all Raman spectroscopy machines as an additional feature to predict the Raman frequency shift and the Raman peak intensity with respect to temperature and changing chemical composition.


Doping-dependent Raman spectra Ionization energy theory Raman peak intensity Raman frequency Defects 


63.20.kd 78.30.Hv 



This work was financially supported by the following individuals: Madam Sebastiammal Savarimuthu, Madam Roosiyamary Lourdhusamy, Mr. Albert Das Arulsamy and Madam Augustinamary Arulsamy.


  1. [1]
    C V Raman Indian J. Phys. 2 387 (1928)Google Scholar
  2. [2]
    C V Raman and K S Krishnan Indian J. Phys. 2 399 (1928)Google Scholar
  3. [3]
    C V Raman and K S Krishnan Nature 121 501 (1928)ADSCrossRefGoogle Scholar
  4. [4]
    C V Raman Nature 121 619 (1928)ADSCrossRefGoogle Scholar
  5. [5]
    C Kittel Introduction to Solid State Physics (New York: Wiley) (1976)zbMATHGoogle Scholar
  6. [6]
    A D Arulsamy Indian J. Phys. (2019) (to be published)Google Scholar
  7. [7]
  8. [8]
    T R Hart, R L Aggarwal and B Lax Phys. Rev. B1 638 (1970)ADSCrossRefGoogle Scholar
  9. [9]
    N W Ashcroft and N D Mermin Solid State Physics (New York: Holt, Rinehart, and Winston) p. 483 (1976)Google Scholar
  10. [10]
    H Taniguchi, H Moriwake, T Yagi and M Itoh Raman Scattering Study on the Phase Transition Dynamics of Ferroelectric Oxides. Advances in Ferroelectrics Chapter 13, p. 279 (2013).
  11. [11]
    K V Emtsev, A Bostwick, K Horn, J Jobst, G L Kellogg, L Ley, J L McChesney, T Ohta, S A Reshanov, J Rohrl, E Rotenberg, A K Schmid, D Waldmann, H B Weber and T Seyller Nat. Mater. 8 203 (2009)ADSCrossRefGoogle Scholar
  12. [12]
    P Sett, S Datta, J Chowdhury, M Ghosh and P K Mallick Indian J. Phys. 91 779 (2017)ADSCrossRefGoogle Scholar
  13. [13]
    S Ghosh, S R Polaki P K Ajikumar, N G Krishna and M Kamruddin Indian J. Phys. 92 337 (2018)ADSCrossRefGoogle Scholar
  14. [14]
    G Boopathi, S Gokul Raj, G Ramesh Kumar, R Mohan and S Mohan Indian J. Phys. 92 715 (2018)ADSCrossRefGoogle Scholar
  15. [15]
    S K Singh, R Singhal, R Vishnoi, V V S Kumar and P K Kulariya Indian J. Phys. 91 547 (2017)ADSCrossRefGoogle Scholar
  16. [16]
    B D Sahoo, K D Joshi and S C Gupta Indian J. Phys. 91 535 (2017)ADSCrossRefGoogle Scholar
  17. [17]
    H J Li, X F Liang, H J Yu, D Q Yang and S Y Yang Indian J. Phys. 90 693 (2016)ADSCrossRefGoogle Scholar
  18. [18]
    P C Dey and R Das Indian J. Phys. 92 1 (2018)CrossRefGoogle Scholar
  19. [19]
    R G Solanki, P Rajaram and P K Bajpai Indian J. Phys. 92 595 (2018)ADSCrossRefGoogle Scholar
  20. [20]
    A D Arulsamy Physica C62 356 (2001)Google Scholar
  21. [21]
    A D Arulsamy Phys. Lett. A300 691 (2002)ADSCrossRefGoogle Scholar
  22. [22]
    A D Arulsamy Pramana J. Phys. 74 615 (2010)ADSCrossRefGoogle Scholar
  23. [23]
    A D Arulsamy Phys. Lett. A334 413 (2005)ADSCrossRefGoogle Scholar
  24. [24]
    A D Arulsamy Ann. Phys. 326 541 (2011)ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J Gharavi-Naeini PhD Thesis (Simon-Fraser University, Canada) (1999)Google Scholar
  26. [26]
    H Y Sun, S C Lien, Z R Qiu, H C Wang, T Mei, C W Liu and Z C Feng Opt. Express 21 26475 (2013)ADSCrossRefGoogle Scholar
  27. [27]
    M Bruna, A K Ott, M Ijäs, D Yoon, U Sassi and A C Ferrari ACS Nano 8 7432 (2014)CrossRefGoogle Scholar
  28. [28]
    J Röhrl, M Hundhausen, K V Emtsev, T Seyller, R Graupner and L Ley Appl. Phys. Lett. 92 201918 (2008)ADSCrossRefGoogle Scholar
  29. [29]
    A D Arulsamy and K Ostrikov Phys. Lett. A373 2267 (2009)ADSCrossRefGoogle Scholar
  30. [30]
    A D Arulsamy, K Elersič, M Modic, U Cvelbar and M Mozetič ChemPhysChem 11 3704 (2010)Google Scholar
  31. [31]
    A D Arulsamy, Z Kregar, K Elersič, M Modic and U S Subramani Phys. Chem. Chem. Phys. 13 15175 (2011)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Condensed Matter Group, Institute of Interdisciplinary SciencePort KlangMalaysia

Personalised recommendations