Indian Journal of Physics

, Volume 93, Issue 9, pp 1155–1162 | Cite as

A vertical optimization method for a simultaneous extraction of the five parameters characterizing the barrier height in the Mo/4H–SiC Schottky contact

  • S. ToumiEmail author
  • Z. Ouennoughi
Original Paper


The temperature dependence of the parameters related to the barrier height inhomogeneities for Mo/4H–SiC Schottky diode in 298–498 K temperature range has been investigated. Due to the barrier height inhomogeneities that prevail at the interface of the Schottky diode, a Gaussian distribution of the barrier height is assumed. We have extracted simultaneously, for every temperature, all the parameters characterizing the barrier height such as the mean barrier height \( \bar{\phi }_{{{\text{B}}0}} \), the coefficients ρ2, ρ3 quantifying the deformation of the barrier height, the corresponding temperature T0 modeling the divergence of the ideality factor n from the unity, the standard deviation of the Gaussian distribution of the barrier σs and also the series resistance Rs using a vertical optimization process on the current without any graphical extraction about ρ2, ρ3, \( \bar{\phi }_{{{\text{B}}0}} \), σs and Rs. The extracted parameters like (\( \bar{\phi }_{{{\text{B}}0}} \), ρ2, ρ3, σs, Rs) were found to be a temperature dependent. Moreover, an excellent agreement was obtained between the IVT plots calculated with the extracted parameters using a vertical optimization process with the experimental one.


Mo/4H–SiC Schottky diode Metal/semiconductor interface inhomogeneities Barrier’s height parameters T0-effect Vertical optimization method 


85.30De 85.30Hi 73.30.+y 73.40.−c 02.60Pn 



One of the authors S. Toumi would like to thank Dr T. Guerfi for his assistance in the correction of the present paper and for numerous fruitful discussions.


  1. [1]
    C Subhash and J Kumar J. Appl. Phys. 80 288 (1996)ADSCrossRefGoogle Scholar
  2. [2]
    C Subhash and J Kumar Semicond. Sci. Technol. 10 1680 (1995)ADSCrossRefGoogle Scholar
  3. [3]
    V Kumar, A S Maan and J Akhtar Vac. Sci. Technol. B 32 0412031 (2014)Google Scholar
  4. [4]
    A Arnold and K Hess J. Appl. Phys. 61 5178 (1987)ADSCrossRefGoogle Scholar
  5. [5]
    J Osvald Solid State Electron. 35 1629 (1992)ADSCrossRefGoogle Scholar
  6. [6]
    R F Schmitsdorf, T U Kampen and W Monch J. Vac. Sci. Technol. B 15 1221 (1997)CrossRefGoogle Scholar
  7. [7]
    S Chand Semicond. Sci. Technol. 17 L36 (2002)ADSCrossRefGoogle Scholar
  8. [8]
    M K Hudait and S B Krupanidhi Physica B 307 125 (2001)ADSCrossRefGoogle Scholar
  9. [9]
    S Acar, S Karadeniz, N Tugluoglu, A B Selcuk and M Kesap Appl. Surf. Sci. 233 373 (2004)ADSCrossRefGoogle Scholar
  10. [10]
    S. Huang and F. Lu Appl. Surf. Sci. 252 4027 (2006)ADSCrossRefGoogle Scholar
  11. [11]
    S Kyoung, E-S Jung and M Y Sung Microelectron. Eng. 154 69 (2016)CrossRefGoogle Scholar
  12. [12]
    A Ashok Kumar, V Janardhanam, V Rajagopal Reddy and P Narasimha Reddy Superlattices Microstruct. 45 22 (2009)ADSCrossRefGoogle Scholar
  13. [13]
    S Parui, R Ruiter, P J Zomer, M Wojtaszek, B J van Wees and T Banerjee J. Appl. Phys. 116 2445051 (2014)CrossRefGoogle Scholar
  14. [14]
    Y-J Lin and J-H Lin Appl. Surf. Sci. 311 224 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    R Tung Appl. Phys. Rev. 1 0113041 (2014)Google Scholar
  16. [16]
    W Mönch Semiconductor Surfaces and Interfaces, 3rd edn. (Springer) p 386 (2001)Google Scholar
  17. [17]
    W Mönch Electronic Properties of Semiconductor Interfaces, 1st edn. (Springer) p 33 (2004)Google Scholar
  18. [18]
    E H Rhoderick and R H Williams Metal Semiconductor Contacts, 2nd edn. (Clarendon, Oxford) p 11 (1988)Google Scholar
  19. [19]
    Y P Song, R L Van Meirhaeghe, W H Laflère and F Cardon Solid State Electron. 29 633 (1986)ADSCrossRefGoogle Scholar
  20. [20]
    J H Werner and H H Guttler J. Appl. Phys. 69 1522 (1991)ADSCrossRefGoogle Scholar
  21. [21]
    R T Tung Appl. Phys. Lett. 58 2821 (1991)ADSCrossRefGoogle Scholar
  22. [22]
    A Gumus, A Turut and N Yalcin J. Appl. Phys. 91 245 (2002)ADSCrossRefGoogle Scholar
  23. [23]
    A Di Bartolomeo, F Giubileo, G Luongo, L Iemmo, N Martucciello, G Niu, M Fraschke, O Skibitzki, T Schroeder and G Lupina 2D Mater. 4 1 (2017)CrossRefGoogle Scholar
  24. [24]
    S Toumi, A Ferhat Hamida, L Boussouar, A Sellai, Z Ouennoughi and H Ryssel Microelectron. Eng. 86 303 (2009)CrossRefGoogle Scholar
  25. [25]
    A Ferhat Hamida, Z Ouennoughi, A Sellai, R Weiss and H Ryssel Semicond. Sci. Technol. 23 0450051 (2008)Google Scholar
  26. [26]
    O Gullu, M Biber, S Duman and A Turut Appl. Surf. Sci. 253 7246 (2007)ADSCrossRefGoogle Scholar
  27. [27]
    A R Saha, C B Dimitriu, A B Horsfall, S Chattopadhyay, N G Wright, A G O’Neill and C K Maiti Appl. Surf. Sci. 252 3933 (2005)ADSCrossRefGoogle Scholar
  28. [28]
    Z Tekeli, Ş Altındal, M Çakmak, S Özçelik, D Çalışkan and E Özbay J. Appl. Phys. 102 0545101 (2007)CrossRefGoogle Scholar
  29. [29]
    A Sellai and M Mamor Appl. Phys. A 89 503 (2007)ADSCrossRefGoogle Scholar
  30. [30]
    R Weiss, L Frey and H Ryssel Appl. Surf. Sci. 184 413 (2001)ADSCrossRefGoogle Scholar
  31. [31]
    Z Ouennoughi, S Toumi and R Weiss Phys. B 456 176 (2015)ADSCrossRefGoogle Scholar
  32. [32]
    S M Sze Physics of Semiconductor Devices (Wiley-Interscience) p 154 (1981)Google Scholar
  33. [33]
    M J Bozack Phys. Stat. Sol. (b) 2002 549 (1997)ADSCrossRefGoogle Scholar
  34. [34]
    A Di Bartolomeo, G Luongo, F Giubileo, N Funicello, G Niu, T Schroeder, M Lisker and G Lupina 2D Mater. 4 1 (2017)CrossRefGoogle Scholar
  35. [35]
    P G McCafferty, A Sellai, P Dawson and H Elabd Solid State Electron. 39 583 (1996)ADSCrossRefGoogle Scholar
  36. [36]
    S K Cheung and N W Cheung Appl. Phys. Lett. 49 85 (1986)ADSCrossRefGoogle Scholar
  37. [37]
    J H Werner Appl. Phys. A 47 291 (1988)ADSCrossRefGoogle Scholar
  38. [38]
    M Biber Phys. B 325 138 (2003)ADSCrossRefGoogle Scholar
  39. [39]
    M A Mayimele, J P Janse van Rensburg, F D Auret and M Diale Phys. B 480 58 (2016)ADSCrossRefGoogle Scholar
  40. [40]
    J Osvald and E Dobrocka Semicond. Sci. Technol. 1198 (1996)Google Scholar
  41. [41]
    W H Press, S A Teukolsky, W T Vetterling and B P Flannery Nemerical Recipes in Fortran 77, The Art of Scientific Computing Vol 1. (Press Syndicate of the University of Cambridge) p 355 (1992)Google Scholar
  42. [42]
    S Toumi, Z Ouennoughi, K C Strenger and L Frey Solid State Electron. 122 56 (2016)ADSCrossRefGoogle Scholar
  43. [43]
    B Akkal, Z Benamara, A Boudissa, N Bachir Bouiadjra, M Amrani, L Bideux and B Gruzza Mater. Sci. Eng. B55 162 (1998)CrossRefGoogle Scholar
  44. [44]
    M Ozer, D E Yıldız, S Altındal and M M Bulbul Solid State Electron. 51 941 (2007)ADSCrossRefGoogle Scholar
  45. [45]
    A N Saxena Surf. Sci. 13 151 (1969)ADSCrossRefGoogle Scholar
  46. [46]
    S Karatas, S Altındal and M Cakar Phys. B 357 386 (2005)ADSCrossRefGoogle Scholar
  47. [47]
    S Altındal, H Kanbur, D E Yıldız and M Parlak Appl. Surf. Sci. 253 5056 (2007)ADSCrossRefGoogle Scholar
  48. [48]
    S Chand and S Bala Semicond. Sci. Technol. 20 1143 (2005)ADSCrossRefGoogle Scholar
  49. [49]
    W P Leroy, C Detavernier, R L Van Meirhaeghe, A J Kellock and C Lavoie J. Appl. Phys. 99 0637041 (2006)CrossRefGoogle Scholar
  50. [50]
    W F Seng and P A Barnes Mater. Sci. Eng. B72 13 (2000)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Laboratoire optoélectronique et composants, Department of PhysicsFerhat Abbas UniversitySétifAlgeria
  2. 2.Department of Physics, Faculty of ScienceM’hamed Bouguara UniversityBoumerdesAlgeria

Personalised recommendations