Advertisement

Structural analysis and charge transfer properties of a novel pyrazoline derivative: potential energy scan, XRD, DFT and molecular docking studies

  • Sahaj A. GandhiEmail author
  • Urmila H. Patel
  • V. M. Barot
  • N. V. S. Varma
Original Paper
  • 7 Downloads

Abstract

The title molecule, 1-[3-(6-bezyloxy-2-hydroxy-4-methyl-cyclohexa-2, 4-dienyl)-5-phenyl-4, 5-dihydro-pyrazol-1-yl]-propan-1-one was synthesized and characterized by FTIR, 1H NMR, 13C NMR and single-crystal X-ray diffraction technique. The optimized geometry is calculated using density functional theory (DFT). A good linear correlation was observed between experimental data and theoretical structural parameters (DFT). Predicted vibrational frequencies were assigned and compared with the experimental IR spectra and they support each other. To determine conformational flexibility and hence to predict the stable geometry, potential energy scan of the molecule was obtained with respect to selected degree of freedom about O18–C19 torsional angle varied from − 180° to + 180° in steps 20°. NBO analysis was carried out for the molecule to check possible hydrogen bond interactions to correlate with those of X-ray data. Molecular stability is mainly due to weak but collective contributions of significant nonconventional C–H…π, π–π and C–H…O-type hydrogen bond interactions and those interactions also quantified by Hirshfeld surface analysis. The thermal stability of the compound was determined with the aid of thermo-gravimetric analysis and differential thermal analysis. The molecular docking study was carried out against the title molecule with 5DBM protein receptor active sites.

Keywords

Pyrazol Single-crystal XRD DFT Conformational analysis Hirshfeld surface Molecular docking 

PACS Nos.

07.85.Tt 61.72.-y 68.35.bg 68.35.bj 31.15.E 

Notes

Acknowledgement

We are thankful to DST, New Delhi for single-crystal X-ray diffractometer facility under DST-FIST program and UGC, New Delhi for Schrodinger software facility under UGC-DSA program. One of us, SAG, is also thankful to UGC, New Delhi, for the financial support (RFSMS) carried out this research work.

References

  1. [1]
    E Palaskar, M Aytemir, I T Uzbay and D Erol Eur. J. Med. Chem. 36 539 (2001)CrossRefGoogle Scholar
  2. [2]
    J Tae-Sook, K K Soon, K Ju-Ryoung, C Kyung-Hyun, S Lee and W S Lee Bio Org. Med. Chem. Lett. 14 2719 (2004)CrossRefGoogle Scholar
  3. [3]
    S R Smith, G Denhardt and C Terminelli Eur. J. Pharmacol. 432 107 (2001)CrossRefGoogle Scholar
  4. [4]
    Z Ozdemir, H B Kandilici, B Gumusel, U Calis and A A Bilgin Eur. J. Med. Chem. 42 373 (2007)CrossRefGoogle Scholar
  5. [5]
    B K Sarkar, R Patel and U Bhadoriya J. Adv. Pharm. Edu. Res. 1 243 (2011)Google Scholar
  6. [6]
    P G Baraldi, S Manfredini, R Romagnoli, L Stevanato, A N Zaid and R Manservigi Nucleos. Nucleot. 17 2165 (1998)CrossRefGoogle Scholar
  7. [7]
    C Franco et al. J. Med. Chem. 48 7113 (2005)CrossRefGoogle Scholar
  8. [8]
    B Gowramma, S Jubie, R Kalirajan, S Gomathy and K Elango Int. J. Pharm. Tech. Res. 1 347 (2009)Google Scholar
  9. [9]
    M J Genin, D A. Allwine et al. J. Med. Chem. 43 5 953 (2000)Google Scholar
  10. [10]
    D Rambabu, G R Krishna, S Basavoju, C M Reddy and M Pal J. Mol. Struct. 994 332 (2011)ADSCrossRefGoogle Scholar
  11. [11]
    W L John, R M Patera, M J Plummer, B P Halling and D A Yuhas Pest. Manag. Sci. 42 29 (1994)Google Scholar
  12. [12]
    M P Donohue, D A Marchuk and H A Rockman J. Am. Coll. Cardiol. 48 1289 (2006)CrossRefGoogle Scholar
  13. [13]
    G Bai, J Li, D Li, C Dong, X Han and P Lin Dyes. Pigment 75 93 (2007)Google Scholar
  14. [14]
    Z L Gong, Y S Xie, B X Zhao, H S Lv and W Y Liu J. Fluoresci. 21 355 (2011)CrossRefGoogle Scholar
  15. [15]
    M G Mamolo, D Zampieri, V Falagiani, L Vio and E Banfi Farmaco 56 593 (2001)CrossRefGoogle Scholar
  16. [16]
    C Cativiela, J L Serrano and M M Zurbano J. Org. Chem. 60 3074 (1995)CrossRefGoogle Scholar
  17. [17]
    D Wang, C Y Zheng and L Fan J. Mol. Struct. 938 311 (2009)ADSGoogle Scholar
  18. [18]
    U H Patel, S A Gandhi, V M Barot and M C Patel J. Mol. Cryst. Liq. Cryst. 624 190 (2016)CrossRefGoogle Scholar
  19. [19]
    S A Gandhi, U H Patel, R D Modh, Y T Naliyapara and A S Patel J. Chem. Crystallogr. 46 387 (2016)CrossRefGoogle Scholar
  20. [20]
    U H Patel, S A Gandhi, V M Barot and M C Patel Cryst. Struct. Theory Appl. 2 167 (2013)CrossRefGoogle Scholar
  21. [21]
    U H Patel, S A Gandhi, V M Barot and N V S Varma Acta Cryst. E69 o840 (2013)Google Scholar
  22. [22]
    U H Patel and S A Gandhi IJPAP 49 263 (2011)Google Scholar
  23. [23]
    K Sarojini, H Krishnan, C C Kanakam and S Muthu Spectrochim. Acta A 108 159 (2013)ADSCrossRefGoogle Scholar
  24. [24]
    G Fitzgerald and J Andzelm J. Phys. Chem. 95 10531 (1991)Google Scholar
  25. [25]
    T Ziegler Pure Appl. Chem. 63 873 (1991)Google Scholar
  26. [26]
    J Andzelm and E Wimmer J. Chem. Phys. 96 1280 (1992)Google Scholar
  27. [27]
    G E Scuseria J. Chem. Phys. 97 7528 (1992)Google Scholar
  28. [28]
    R M Dickson and A D Becke J. Chem. Phys. 99 3898 (1993)Google Scholar
  29. [29]
    B G Johnson, P M W Gill and J A Pople J. Chem. Phys. 98 5612 (1993)Google Scholar
  30. [30]
    A D McLean and G S Chandler J Chem. Phys. 72 5639 (1980)Google Scholar
  31. [31]
    S K Wolff, D J Grimwood, J J McKinnon, D Jayatilaka and M A Spackman CrystalExplorer 2.1 University of Western Australia, Perth (2007)Google Scholar
  32. [32]
    M A Spackman and P G Byrom Chem. Phys. Lett. 267 215 (1997)ADSCrossRefGoogle Scholar
  33. [33]
    F Weinhold and F Landis Valency and bonding: A natural bond orbital donor-acceptor perspective (Cambridge University Press, Cambridge) (2005)CrossRefGoogle Scholar
  34. [34]
    G M Sheldrick Acta Cryst. A64 112 (2008)Google Scholar
  35. [35]
    M J Frisch and et al. Gaussian 09 Revision B.01 (Gaussian, Inc., Wallingford CT) (2010)Google Scholar
  36. [36]
    A Frisch, A B Nielsen and A J Holder GAUSSVIEW Commercial Molecular Graphics Software (2005)Google Scholar
  37. [37]
    H B Schlegel J. Comput. Chem. 3 214 (1982)Google Scholar
  38. [38]
    P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)ADSCrossRefGoogle Scholar
  39. [39]
    A D Becker J. Chem. Phys. 98 5648 (1993)Google Scholar
  40. [40]
    C Lee, W Yang and R G Parr Phys. Rev. B37 785 (1988)ADSCrossRefGoogle Scholar
  41. [41]
    M Amalanathan and I H Joe and I Kostova J. Raman Spect. 41 1076 (2009)ADSCrossRefGoogle Scholar
  42. [42]
    L J Farrugia J. Appl. Cryst. 45 849 (2012)CrossRefGoogle Scholar
  43. [43]
    A L Spek Acta Cryst. D65 148 (2009)Google Scholar
  44. [44]
    Shi-Lu Zhang, Kun Huang and Da-Bin Qina, Acta Cryst. E68 o1370 (2012)Google Scholar
  45. [45]
    Zhi-Ke Lu, Hai-Lin Diao, Shen Li, Bin He Acta Cryst. E64 o1638 (2008)Google Scholar
  46. [46]
    J Bernstein, R E Davis, L Shimoni and N L Chang Angew Chem. Int. Ed. Engl. 34 1555 (1995)CrossRefGoogle Scholar
  47. [47]
    J F Malone, C M Murray, M H Charlton, R Docherty and A J Lavrry J. Chem. Soc. 93 3429 (1997)Google Scholar
  48. [48]
    R M Silverstein, G C Bassler and T C Morrill Spectrometric Identification of Organic Compounds (5th ed., John Wiley & Sons, New York) (1991)Google Scholar
  49. [49]
    V Arjunan, C V Mthili, K Mageswari and A Mohan Spectrochim. Acta Part A 79 245 (2011)ADSCrossRefGoogle Scholar
  50. [50]
    S Ramalingam, S Periandy and S Mohan Spectrochim. Acta A 77 73 (2010)ADSCrossRefGoogle Scholar
  51. [51]
    B S Yadav, S K Tyagi and Seema IJPAP 44 644 (2006)Google Scholar
  52. [52]
    V Arjunan, S Mohan, S Subramanian and B T Gowda Spectrochim Acta A 60 1141 (2004)ADSCrossRefGoogle Scholar
  53. [53]
    H Rostkowska and et al. Spectrochim Acta A 49 551 (1993)ADSCrossRefGoogle Scholar
  54. [54]
    V Krishnakumar, M Sivasubramanian and S Muthunatesan S J. Raman Spectrosc. 40 987 (2009)ADSCrossRefGoogle Scholar
  55. [55]
    I Fleming Frontier Orbitals and Organic Chemical Reactions (John Wiley & Sons, United Kingdom) Ch 2 (1973)Google Scholar
  56. [56]
    R M Yosadara J. Phys. Chem. A106 11283 (2002)Google Scholar
  57. [57]
    A E Reed, L A Curtiss and F Weinhold Chem. Rev. 88 899 (1988)Google Scholar
  58. [58]
    M Szafran, A Komasa and E B Adamska J. Mol. Struct. Theochem. 827 101 (2007)ADSGoogle Scholar
  59. [59]
    C James, R A Amal, R Reghunathan, I H Joe and V S Jayakumar J. Raman Spectrosc. 37 1381(2006)ADSCrossRefGoogle Scholar
  60. [60]
    M A Spackman and P G Byrom Chem. Phys. Lett. 267 215 (1997)ADSCrossRefGoogle Scholar
  61. [61]
    J J McKinnon, A S Mitchell and M A Spackman Chem. Eur. J 4 2136 (1998)CrossRefGoogle Scholar
  62. [62]
    M A Spackman and J J McKinnon Cryst. Eng. Commun. 4 378 (2002)CrossRefGoogle Scholar
  63. [63]
    F P A Fabbiani, L T Byrne, J J Mckinnon and M A Spackman CrystEngComm 9 728 (2007)CrossRefGoogle Scholar
  64. [64]
    M A Spackman and D Jayatilaka CrystEngComm 11 19 (2009)CrossRefGoogle Scholar
  65. [65]
    A J Broido J. Polym. Sci. Part A‐2 7 1761 (1969)Google Scholar
  66. [66]
    S M Tailor and U H Patel J. Mol. Struct. 1088 161 (2015)Google Scholar
  67. [67]
    A W Coats and J P Redfern Nature 201 68 (1964)ADSCrossRefGoogle Scholar
  68. [68]
    R K R Venugopala, J Keshavayya and J Seetharamappa Dyes Pigments 59 237 (2003)CrossRefGoogle Scholar
  69. [69]
    O R A Friesner and et al. J. Med. Chem. 49 6177 (2006)CrossRefGoogle Scholar
  70. [70]
    S Ghosh, A Taylor, M Chin, et al. J. Biol. Chem. 291 25 13014 (2016)Google Scholar
  71. [71]
    Schrödinger (Maestro, version 10.4, Schrödinger, LLC, New York, NY) (2015)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Bhavan’s Shri I. L. Pandya Arts –Science and Smt. J. M. Shah Commerce CollegeDakorIndia
  2. 2.Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia
  3. 3.P. G. Center in ChemistrySmt. S. M. Panchal Science CollegeTalodIndia

Personalised recommendations