Indian Journal of Physics

, Volume 93, Issue 9, pp 1113–1122 | Cite as

DFT investigation of the electronic structure and nonlinear optic properties (NLO) of 3-amino-4-(Boc-amino)pyridine

  • H. VuralEmail author
  • T. Ozdogan
  • M. Orbay
Original Paper


The molecular geometrical parameters, vibrational frequencies, electronic properties and nonlinear optical (NLO) behavior of 3-amino-4-(Boc-amino)pyridine have been evaluated using the B3LYP, CAM-B3LYP and B3PW91 levels of density functional theory (DFT). The dipole moment (μ) and first hyperpolarizability (β) values of the title complex show that the molecule can be a good candidate as NLO material. The energy of HOMO and LUMO levels and the HOMO–LUMO energy gap, hardness, softness and electronegativity have been analyzed using DFT/B3LYP method with the 6-31+G(d,p) basis set. To understand the effect of the different media (gas phase and in methanol solvent) in electronic transitions, the UV–Vis computations of the molecule have been performed using time-dependent DFT (TD-DFT)/6-31+G(d,p) by applying the integral equation formalism-polarized continuum model. The second-order interaction energies of 3-amino-4-(Boc-amino)pyridine have been calculated using natural bond orbital analysis.




02.70.−c 03.67.Lx 39.30.+w 



This work was supported by Amasya University Research Fund for financial support through Project Number FMB-BAP 18-0320. The authors thank the Amasya University Scientific Research Projects Unit for financial support.


  1. [1]
    R C Smith, H H Emmen, F W Bertelsmann, B M Kulig, A C van Loenen and C H Polman Neurology 44(9) 1701 (1994)CrossRefGoogle Scholar
  2. [2]
    R W Middleton and D G Wimberley J. Heterocycl. Chem. 17 1757 (1980)CrossRefGoogle Scholar
  3. [3]
    P K Dubey, K S Chowdary, B Ramesh and P V V Prasada Reddy Synth. Commun. 40 697 (2010)CrossRefGoogle Scholar
  4. [4]
    S Sedehizadeh, M Keogh and P Maddison Clin. Neuropharmacol. 35 191 (2012)Google Scholar
  5. [5]
    M Keogh, S Sedehizadeh and P Maddison Cochrane Database Syst. Rev. 2 1 (2011)Google Scholar
  6. [6]
    J A Montgomery and K Hewson J. Med. Chem. 9 105 (1966)CrossRefGoogle Scholar
  7. [7]
    J A Montgomery and K Hewson J. Med. Chem. 9(3) 354 (1966)CrossRefGoogle Scholar
  8. [8]
    G A Anandha Babu, P Ramasamy and A Chandramohan Mater. Res. Bull. 46 2247 (2011)CrossRefGoogle Scholar
  9. [9]
    H P Gümüş, Ö Tamer, D Avcı and Y Atalay Spectrochim. Acta A 132 183 (2014)ADSCrossRefGoogle Scholar
  10. [10]
    T Shimanouchi, Y Kakiuti and I Gamo J. Chem. Phys. 25 1245 (1956)ADSCrossRefGoogle Scholar
  11. [11]
    P N Prasad and D J Williams Introduction to Nonlinear Optical Effect in Molecules and Polymers (New York: Wiley) (1991)Google Scholar
  12. [12]
    F Meyers, S R Marder, B M Pierce and J L Bredas J. Am. Chem. Soc. 116(23) 10703 (1994)CrossRefGoogle Scholar
  13. [13]
    H Vural J. Mol. Struct. 1102 261 (2015)ADSCrossRefGoogle Scholar
  14. [14]
    S Premkumar, A Jawahar, T Mathavan, M Kumara Dhas, V G Sathe and A Milton Franklin Benial Spectrochim. Acta Part A 129 74 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    C Lee, W Yang and R G Parr Phys. Rev. B 37 785 (1988)ADSCrossRefGoogle Scholar
  16. [16]
    T Yanai, D Tew and N Handy Chem. Phys. Lett. 393 51 (2004)ADSCrossRefGoogle Scholar
  17. [17]
    J P Perdew, K Burke and Y Wang Phys. Rev. B 54 16533 (1996)ADSCrossRefGoogle Scholar
  18. [18]
    M J Frisch et al Gaussian 09, Revision A.1 (Wallingford CT: Gaussian, Inc) (2009)Google Scholar
  19. [19]
    R Dennington, T Keith and J Millam GaussView, Version 5 (Shawnee Mission, KS: Semichem Inc.) (2009)Google Scholar
  20. [20]
    K Brandenburg DIAMOND (Bonn: Demonstrated Version, Crystal Impact GbR) (2005)Google Scholar
  21. [21]
    T M Krygowski, H Szatyowicz and J E Zachara J. Org. Chem. 70(22) 8859 (2005)CrossRefGoogle Scholar
  22. [22]
    Ö Tamer, D Avcı and Y Atalay J. Phys. Chem. Solids 99 124 (2016)ADSCrossRefGoogle Scholar
  23. [23]
    D C Young Computational Chemistry: A Practical Guide for applying Techniques to Real World Problems (Electronic) (New York: Wiley) (2001)Google Scholar
  24. [24]
    N Sundaraganesan, S Ilakiamani, H Saleem, P M Wojiciechowski and D Michalska Spectrochim. Acta A 61 2995 (2005)ADSCrossRefGoogle Scholar
  25. [25]
    P Pandi, G Peramaiyana, M Krishna Kumar, R Mohan Kumar and R. Jayavel Spectrochim. Acta A 88 77 (2012)ADSCrossRefGoogle Scholar
  26. [26]
    E Akalin and S Akyüz J. Mol. Struct. 993 390 (2011)ADSCrossRefGoogle Scholar
  27. [27]
    S I Gorelsky SWizard Program Revision 4.5 University of Ottawa, Ottawa, Canada (2010). Accessed 1 Feb 2014
  28. [28]
    S K Pathak, R Srivastava, A K Sachan, O Prasad and L Sinha Spectrochim. Acta A 143 147 (2015)ADSCrossRefGoogle Scholar
  29. [29]
    A E Reed, L A Curtiss and F Weinhold Chem. Rev. 88 899 (1988)CrossRefGoogle Scholar
  30. [30]
    D W Schwenke and D G Truhlar J. Chem. Phys. 82 2418 (1985)ADSCrossRefGoogle Scholar
  31. [31]
    M Gutowski and G Chalasinski J. Chem. Phys. 98 4728 (1993)ADSCrossRefGoogle Scholar
  32. [32]
    Ç Arıoğlu, Ö Tamer, D Avcı and Y Atalay Indian J. Phys. 92(12) 1613 (2018)ADSCrossRefGoogle Scholar
  33. [33]
    R Zhang, B Du, G Sun and Y X Sun Spectrochim. Acta A 75 1115 (2010)ADSCrossRefGoogle Scholar
  34. [34]
    D A Kleinman Phys. Rev. 126 1977 (1962)ADSCrossRefGoogle Scholar
  35. [35]
    C W N Cumper and A Singleton J. Chem. Soc. B 1096 (1967)Google Scholar
  36. [36]
    C Adant, M Dupuis and J L Bredas Int. J. Quant. Chem. 56 497 (1995)CrossRefGoogle Scholar
  37. [37]
    K Sayin, D Karataş, N Karakuş, T A Sayin, Z Zaim and S E Kariper Polyhedron 90 139 (2015)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringAmasya UniversityAmasyaTurkey
  2. 2.Department of Computer Education and Instructional TechnologyAmasya UniversityAmasyaTurkey
  3. 3.Department of Science EducationAmasya UniversityAmasyaTurkey

Personalised recommendations