Indian Journal of Physics

, Volume 93, Issue 9, pp 1147–1153 | Cite as

Ultrasonic study of Laves phase compounds ScOs2 and YOs2

  • Chandreshvar Prasad YadavEmail author
  • Dharmendra Kumar Pandey
  • Devraj Singh
Original Paper


The paper presents computation of second- and third-order elastic constants of Laves phase compounds ScOs2 and YOs2 at room temperature using Lennard-Jones potential model. The thermal relaxation time, ultrasonic velocity, ultrasonic attenuation and other related thermo-physical parameters (Debye average velocity, Debye temperature, thermal conductivity, specific heat and thermal energy density) are also calculated using second- and third-order elastic constants. The obtained elastic and ultrasonic properties of chosen compounds have been likened with the properties of other hexagonal structured materials for complete analysis and characterization.


Laves phase compound Elastic properties Thermal properties Ultrasonic properties 


43.35.Cg 62.65+K 63.20.Kr 65.40.-b 



  1. [1]
    X Yan, X Chen, H Michor, W Wolf, V T Witusiewicz, E Bauer, R Podloucky and P Rogl Phys. Rev. B 97 125110 (2018)ADSCrossRefGoogle Scholar
  2. [2]
    S Bhatt, H S Mund, K Kumar, K Bapna, ADashora, M Itou, Y Sakurai and B L Ahuja J. Magn. Magn. Mat. 454 125 (2018)ADSCrossRefGoogle Scholar
  3. [3]
    L Ma, Y Bai and Z Liu Steel Res. Int. 88 1600412 (2017)CrossRefGoogle Scholar
  4. [4]
    R Michalski and J Zygadło J. Magn. Magn. Mat. 452 415 (2018)ADSCrossRefGoogle Scholar
  5. [5]
    B A Lindquist, R B Jadrich and T M Truskett J. Chem. Phys. 148 191101 (2018)ADSCrossRefGoogle Scholar
  6. [6]
    N Turkdal, E Deligoz, H Ozisik and H B Ozisik, Phase Transitions 90 598 (2017)CrossRefGoogle Scholar
  7. [7]
    H Pawar, M Aynyas and S P Sanyal J. Magn. Magn. Mat. 468 123 (2018)ADSCrossRefGoogle Scholar
  8. [8]
    H Pawar, M Shugani, M Aynyas and S P Sanyal AIP Conf. Proc. 1953 110039 (2018)CrossRefGoogle Scholar
  9. [9]
    L Ma, Y Duan and R Li Philos. Mag. A 97 2406 (2017)ADSCrossRefGoogle Scholar
  10. [10]
    J W Arblaster Platinum Metals Rev. 39 164 (1995)Google Scholar
  11. [11]
    J Haines, J M Léger and G Bocquillon Annu. Rev. Mater. Res. 31 1 (2001)ADSCrossRefGoogle Scholar
  12. [12]
    R B Kaner, J J Gilman and S H Tolbert Science 308 126 (2005)CrossRefGoogle Scholar
  13. [13]
    U Lundin, L Fast, L Nordstrom, B Johansson, JM Wills and O Eriksson Phys. Rev. B 57 4979 (1998)ADSCrossRefGoogle Scholar
  14. [14]
    W Xing, XQ Chen, D Li, Y Li, C L Fu, SV Meschel and X Ding Intermetallics 28 16 (2012)CrossRefGoogle Scholar
  15. [15]
    Q J Liu, N C Zhang, F S Liu and Z T Liu J. Alloy Compd. 589 278 (2014)CrossRefGoogle Scholar
  16. [16]
    N Acharya, D Shrivastavaa and S P Sanyal AIP Conf. Proc. 1832 090018 (2017)CrossRefGoogle Scholar
  17. [17]
    D K Pandey and S Pandey In Acoustic wave : Ultrasonic : A Technique of Material Characterization (Ed. D W Dissanayak, Croatia: Scio Publisher) p 397 (2010)Google Scholar
  18. [18]
    D K Pandey, P K Yadawa and R R Yadav Mater. Lett. 61 4747 (2007)CrossRefGoogle Scholar
  19. [19]
    A K Yadav, R R Yadav, D K Pandey and D Singh Mater. Lett. 62 3258 (2008)CrossRefGoogle Scholar
  20. [20]
    W Voigt Lehrbuch der kristallphysik (mitausschluss der kristalloptik) (Leipzig Berlin, B.G. Teubner) (1928)Google Scholar
  21. [21]
    A Reuss Z. ang. Math. und Mech. 9 49 (1929)CrossRefGoogle Scholar
  22. [22]
    R Hill Proc. Phys. Soc. A65 349 (1952)ADSCrossRefGoogle Scholar
  23. [23]
    P F Weck, E Kim, V Tikare and J A Mitchell Dalton Trans. 44 18769 (2015)CrossRefGoogle Scholar
  24. [24]
    A Yakoubi, O Baraka and B Bouhafs Results Phys. 2 58 (2012)ADSCrossRefGoogle Scholar
  25. [25]
    X Q Chen, H Y Niu, D Z Liand YY Li Intermetallics 19 1275 (2011)CrossRefGoogle Scholar
  26. [26]
    S O Pillai Solid State Physics: Crystal Physics, 7th edn. (New Delhi: New Age International Publisher). p 100 (2005)Google Scholar
  27. [27]
    D E Gray AIP Handbook, IIIrd edn. (New York: McGraw Hill Co. Inc. New York), p 4-44 and p 4-57 (1956)Google Scholar
  28. [28]
    D T Morelli and G A Slack High Lattice Thermal Conductivity Solids (High Thermal Conductivity Materials) (Ed. S L Shindé and J S Goela, New York: Springer) Ch 2, p 37 (2006)Google Scholar
  29. [29]
    S Pugh Philos. Mag. 45 823 (1954)CrossRefGoogle Scholar
  30. [30]
    X Q Chen, W Wolf, R Podloucky and P Rogl Phys. Rev. B 71 174101 (2005)ADSCrossRefGoogle Scholar
  31. [31]
    H Aynaou, V R Velasco, A Nougaoui, E H El Boudouti, D Bria and B Djafari-Rouhani Surface Science 590 224 (2005)ADSCrossRefGoogle Scholar
  32. [32]
    A Polian and M Grimsditch I. J. Appl. Phys. 79 3343(1996)ADSCrossRefGoogle Scholar
  33. [33]
    M Nandanpawar and S Rajagopalan J Acoust. Soc Am. 71 1469 (1982)ADSCrossRefGoogle Scholar
  34. [34]
    D K Pandey, D Singh and R R Yadav Appl. Acoust. 68 766 (2007)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Chandreshvar Prasad Yadav
    • 1
    Email author
  • Dharmendra Kumar Pandey
    • 1
  • Devraj Singh
    • 2
  1. 1.Department of PhysicsP.P.N. (P.G.) CollegeKanpurIndia
  2. 2.Amity Institute of Applied SciencesAmity UniversityNoidaIndia

Personalised recommendations