Advertisement

Indian Journal of Physics

, Volume 93, Issue 9, pp 1233–1239 | Cite as

Gravitational energy–momentum and gravitational flux of cylindrically rotating solution in the teleparallel gravity

  • M. F. MouradEmail author
Original Paper
  • 52 Downloads

Abstract

In the framework of teleparallel equivalent to general relativity, we study the energy–momentum and its relevant quantities of cylindrically axially symmetric rotating (CASR) space time. We calculate the gravitational energy–momentum and gravitation energy–momentum flux of the derived solution. We show that in specific cases, our results coincide with what the results derived before in general relativity.

Keywords

Teleparallel gravity Gravitational energy–momentum Gravitational flux Torsion vector Torsion axial-vector 

PACS Nos.

04.25.Nx 04.80.Cc 04.50.+h 04.20.Jb 

Notes

Acknowledgements

We thank G G L Nashed, the British University in Egypt, and R M Gad, Minia University, for interesting comments.

References

  1. [1]
    T Ortín Gravity and Strings (Cambridge University Press) Chapter 4, Section 6, p 245 (2004)Google Scholar
  2. [2]
    F W Hehl, J D McCrea, E W Mielke, and Y Ne’emann Phys. Rep. 2581 (1995)Google Scholar
  3. [3]
    K Hayashi and T Shirafuji Phys. Rev. D19 3524 (1979)ADSGoogle Scholar
  4. [4]
    V C de Andrade and J G Pereira Phys. Rev. D56 4868 (1997)Google Scholar
  5. [5]
    G G L Nashed Gen. Rel. Grav. 45 1887 (2013)ADSCrossRefGoogle Scholar
  6. [6]
    D N Blaschke, F Gieres, M Reboud and M Schweda Nucl. Phys. B912 192 (2016)ADSCrossRefGoogle Scholar
  7. [7]
    C Möller Ann. Phys. (N Y) 4 347 (1958)ADSCrossRefGoogle Scholar
  8. [8]
    C Pellegrini and J Plebanski Mat. Fys. Scr. Dan. Vid. Selsk. 23 (1963)Google Scholar
  9. [9]
    G G L Nashed Eur. Phys. J. C49, 851 (2007)ADSGoogle Scholar
  10. [10]
    G G L Nashed Int. J. Mod. Phys. A21 3181 (2006)ADSCrossRefGoogle Scholar
  11. [11]
    R Utiyama Phys. Rev. C101 1597 (1956)ADSCrossRefGoogle Scholar
  12. [12]
    P G Bergmann and V de Sabbata Cosmology and Gravitation on Spin, Torsion, “Rotation and Supergravity”(Plenum, New York) Chapter 4, Section 3, p 50 (1980); P Baekler and F W Hehl Int J Mod Phys D15 635 (2006)Google Scholar
  13. [13]
    G G L Nashed Mod. Phys. Lett. A22 1047 (2007)ADSCrossRefGoogle Scholar
  14. [14]
    V C de Andrade, L C T Guillen and J G Pereira Phys. Rev. Lett. 84 4533 (2001); Phys. Rev. D64 027502 (2000)Google Scholar
  15. [15]
    K Hayashi, and T Shirafuji Prog. Theor. Phys. 73 54 (1985)ADSCrossRefGoogle Scholar
  16. [16]
    G G L Nashed Int. J. Mod. Phys. A25 2883 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    F I Cooperstock Found. Phys. 8 1011 (1992)ADSMathSciNetGoogle Scholar
  18. [18]
    D Lovelock J. Math. Phys. 3, 498 (1971)ADSCrossRefGoogle Scholar
  19. [19]
    J Schwinger Phys. Rev. 130 1253 (1963)ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    G G L Nashed and M F Mourad II Nuovo Cim 120B 1307 (2005)Google Scholar
  21. [21]
    Maluf J W and da Rocha-Neto J F Phys Rev D64 084014 (2001)ADSGoogle Scholar
  22. [22]
    J W Maluf Annal. der Phys. 14 723 (2005)ADSCrossRefGoogle Scholar
  23. [23]
    J W Maluf, Fand M E and A Kneip J. Math. Phys. 37 6302 (1996)ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J W Maluf, M V O Veiga, J F da Rocha-Neto Gen. Rel. Grav. 239 227 (2007)ADSCrossRefGoogle Scholar
  25. [25]
    J W Maluf and S C Ulhoa Class. Quant. Grav. 411233 (2007)Google Scholar
  26. [26]
    J W Maluf, and S C Maluf Phys. Rev. D78 069901 (2008)ADSGoogle Scholar
  27. [27]
    M Sharif and K Nazir Commun. Theor. Phys. 50 664 (2008)ADSCrossRefGoogle Scholar
  28. [28]
    R M Gad and M F Mourad Astrophys. Space Sci. 214 341 (2008)ADSCrossRefGoogle Scholar
  29. [29]
    J W Maluf, F F Faria and K H Castello-Branco Class. Quantum Grav. 20 4683 (2003)ADSCrossRefGoogle Scholar
  30. [30]
    J W Maluf and F F Faria Ann. Phys. (Leipzig) N. 10 13 604 (2004)Google Scholar
  31. [31]
    M Sharif and A Jawad Astrophys. Space Sci. 331 321 (2011)ADSCrossRefGoogle Scholar
  32. [32]
    G G L Nashed Gen. Relat. Grav. 47 75 (2015)ADSCrossRefGoogle Scholar
  33. [33]
    R M Gad Astrophys. Space Sci. 346 553 (2013); Int. J. Theor. Phys. 53 30 (2014); Rocha-Neto Phys. Rev. D88 02404 (2013)Google Scholar
  34. [34]
    J F da Rocha Neto, J W Maluf Gen. Relat. Gravit. 46 1667 (2014)ADSCrossRefGoogle Scholar
  35. [35]
    J W Maluf, J F da Rocha Neto and S C Ulhoa Gen. Relat. Gravit. 47 (2015)Google Scholar
  36. [36]
    R Aldrovandi and J G Pereira Introduction to Teleparallel Gravity (Dordrecht, Springer) Chapter 15, p 179 (2012)Google Scholar
  37. [37]
    D Kramer, H Stephani, M A H MacCalltun and E Herlt Exact Solutions of Einstein’s Field Equations (Cambridge: Cambridge University Press) Chapter 19, Section 2, p 225 (1980)Google Scholar
  38. [38]
    G Magli Gen. Relat. Gravit. 25 1277 (1993)ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    G Magli and J Kijowsld Gen. Relat. Gravit. 24 139 (1992)Google Scholar
  40. [40]
    R P Kerr Phys. Rev. Lett. 11 237 (1963)ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A Maeder and G Meynet Rev. Mod. Phys. 84 25 (2012)ADSCrossRefGoogle Scholar
  42. [42]
    V V Usov Nature 357 472 (1992)ADSCrossRefGoogle Scholar
  43. [43]
    K S Thorne Astrophys. J. 158 1 (1969)Google Scholar
  44. [44]
    Balbus S A PNAS 113 42 11662 (2016)Google Scholar
  45. [45]
    M Sharif and S Taj Astrophys. Space Sci. 325 75 (2010); Mod. Phys. Lett. 25A 221 (2010)Google Scholar
  46. [46]
    M Sharif and T Fatima Int. J. Mod. Phys. A 20 4309 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of scienceMinia UniversityEl MiniaEgypt

Personalised recommendations