Indian Journal of Physics

, Volume 93, Issue 9, pp 1137–1145 | Cite as

Thermodynamic approach of AlGaN MOVPE growth at atmospheric pressure

  • I. HalidouEmail author
  • A. Touré
  • B. El Jani
Original Paper


AlxGa1-xN epilayers were grown on GaN/sapphire substrate by metalorganic vapor-phase epitaxy (MOVPE) at atmospheric pressure. Different trimethylaluminum (TMA) flow rates were used in order to vary the solid aluminum (Al) molar fraction. In situ laser reflectometry shows that the higher the TMA flow, the lower the growth rate. The Al molar fraction was determined by high-resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. In order to explain the evolution of the growth rate and Al fraction, we have developed a complete thermodynamic model in which all possible parasitic reactions between TMA and ammonia (NH3) have been considered. The experimental results are explained by adding a correction factor γ in the definition of the theoretical Al molar fraction. This factor is related to parasitic reactions. Two principal adducts AlCH3.NH and (AlCH3.NH)3 were predicted to form in a temperature range from 300 to 1000 K with a maximum equilibrium partial pressure at 600 K for AlCH3.NH species. These adducts undergo a thermal decomposition and disappear for temperatures above 700 K and 1000 K for (AlCH3.NH)3 and AlCH3.NH, respectively. We conclude that the parasitic reactions would be avoided or minimized if TMA and NH3 are mixed in a reactor region where the temperature is above 1000 K. Thus, the growth rate and Al incorporation would be better controlled in a MOVPE reactor designed such a way that the mixing of TMA and NH3 flows takes place at the latest, in the hottest region.


MOVPE Aluminum fraction Thermodynamic model Parasitic reactions Precursor-mixing temperature 


81.15.Gh 73.61.At 05.70.-a 82.33.Ya 61.05.Cp 07.20.Dt 



The authors would like to thank Pr T. Boufaden for helpful discussions. This work is supported by DGRST.


  1. [1]
    R M Farell, E C Young, F Wu, S P DenBaars and J S Speck Semicond. Sci. Technol. 27 024001 (2012)ADSCrossRefGoogle Scholar
  2. [2]
    P Vennéguès Semicond. Sci. Technol. 27 024004 (2012)Google Scholar
  3. [3]
    H K Chauveau, P De Mierry, J-M Chauveau and J-Y Duboz J. Cryst. Growth 316 30 (2011)ADSCrossRefGoogle Scholar
  4. [4]
    H Sun et al. Appl. Phys. Lett. 85 531 (2004)ADSCrossRefGoogle Scholar
  5. [5]
    Y Jung et al. J. Appl. Phys. 42 2349 (2003)CrossRefGoogle Scholar
  6. [6]
    T Someya and Y Arakawa Appl. Phys. Lett. 73 3653 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    C Y Fang, C F Lin, E Y Chang and M S Feng Appl. Phys. Lett. 80 4558 (2002)ADSCrossRefGoogle Scholar
  8. [8]
    D C Lu and S Duan J. Cryst. Growth 208 73 (2000)ADSCrossRefGoogle Scholar
  9. [9]
    A Koukitu, Y Kumagai and H Seki J. Cryst. Growth 221 743 (2000)ADSCrossRefGoogle Scholar
  10. [10]
    Y A Xi et al. Appl. Phys. Lett. 90 51104 (2007)CrossRefGoogle Scholar
  11. [11]
    A Rice et al. J. Cryst. Growth 312 1321 (2010)ADSCrossRefGoogle Scholar
  12. [12]
    D W Song, H J Kim, Y S Jeon and E Yoon J. Cryst. Growth 298 367 (2007)ADSCrossRefGoogle Scholar
  13. [13]
    A Belousov, J Karpinski and B Batlogg J. Cryst. Growth 312 2579 (2010)ADSCrossRefGoogle Scholar
  14. [14]
    D Endres and S Mazumder J. Cryst. Growth 335 42 (2011)ADSCrossRefGoogle Scholar
  15. [15]
    J R Creighton, G T Wang, W G Breiland and M E Coltrin J. Cryst. Growth 261 204 (2004)ADSCrossRefGoogle Scholar
  16. [16]
    K Matsumoto and A Tachibana J. Cryst. Growth 272 360 (2004)ADSCrossRefGoogle Scholar
  17. [17]
    K Hiramatsu et al. J. Cryst. Growth 221 316 (2000)ADSCrossRefGoogle Scholar
  18. [18]
    I Halidou et al. Mater. Sci. Eng. B 110 251 (2004)CrossRefGoogle Scholar
  19. [19]
    Z Benzarti et al. Phys. Stat. Sol a 201 502 (2004)ADSCrossRefGoogle Scholar
  20. [20]
    I. Halidou et al. Appl. Surf. Science 280 660 (2013).ADSCrossRefGoogle Scholar
  21. [21]
    I. Halidou et al. Opt. Mater. 35 988 (2013)ADSCrossRefGoogle Scholar
  22. [22]
    A Touré et al. Phys. Stat. Sol a 209 977 (2012)ADSCrossRefGoogle Scholar
  23. [23]
    D G Zhao et al. Appl. Surf. Sci 253 2452 (2006)ADSCrossRefGoogle Scholar
  24. [24]
    G S Huang, H H Yao, T C Lu, H C Kuo and S C Wang J. Appl. Phys 99 104901 (2006)ADSCrossRefGoogle Scholar
  25. [25]
    S C Choi et al. J. Appl. Phys 87 172 (2000)ADSCrossRefGoogle Scholar
  26. [26]
    AV Kondratyev et al. J. Cryst. Growth 272 420 (2004)ADSCrossRefGoogle Scholar
  27. [27]
    D G Zhao et al. J. Cryst. Growth 289 72 (2006)ADSCrossRefGoogle Scholar
  28. [28]
    A V Lobanova et al. J. Cryst. Growth 287 601 (2006)ADSCrossRefGoogle Scholar
  29. [29]
    T G Mihopoulos, V Gupta and K. F Jensen J. Cryst. Growth 195 733 (1998)ADSCrossRefGoogle Scholar
  30. [30]
    B Cheynet, J D Dubois and A Rivet Thermodata/INPG/CNRS (Saint Martin d’Hères Cedex) (1998)Google Scholar
  31. [31]
    A Rebey, L Beji, B El Jani and P Gibart J. Cryst. Growth 191 734 (1998)ADSCrossRefGoogle Scholar
  32. [32]
    A Bchetnia, A Rebey, T Boufaden and B El Jani J. Cryst. Growth 207 15 (1999)ADSCrossRefGoogle Scholar
  33. [33]
    A Rebey, T Boufaden and B El Jani J. Cryst. Growth 203 12 (1999)ADSCrossRefGoogle Scholar
  34. [34]
    I Halidou, Z Benzarti, T Boufaden and B El Jani Superlat. Microstruct 40 496 (2006)ADSCrossRefGoogle Scholar
  35. [35]
    A Toure, I Halidou, Z Benzarti and T Boufaden Microelectron. J. 40 363 (2009)CrossRefGoogle Scholar
  36. [36]
    J R Creighton and G T Wang J. Phys. Chem. A 109 10554 (2005)CrossRefGoogle Scholar
  37. [37]
    JANAF Thermochemical Tables, 2nd edn. NSRDS-NBS 37 (Washington DC: National Bureau of Standards US) (1971)Google Scholar
  38. [38]
    I N Przhevalskii, S Y Karpov and Y N Makarov MRS Internet J. Nitride Semicond. Res 3 30 (1998)CrossRefGoogle Scholar
  39. [39]
    C. Touzia, F. Omnès, B. El Jani and P. Gibart J. Cryst. Growth 279 31 (2005)ADSCrossRefGoogle Scholar
  40. [40]
    N Kato et al. J. Cryst. Growth 298 215 (2007)ADSCrossRefGoogle Scholar
  41. [41]
    D B Li et al. J. Cryst. Growth 298 372 (2007)ADSCrossRefGoogle Scholar
  42. [42]
    N Fujimoto et al. Phys. Stat. Sol c 3 1617 (2006)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Sciences and TechnologiesAbdou Moumouni UniversityNiameyNiger
  2. 2.Institut Supérieur des Métiers du Bâtiment, des travaux publics et de l’urbanismeEcole Supérieure PolytechniqueNouakchottMauritanie
  3. 3.Unité de Recherche sur les Hétéro-Epitaxies et Applications (URHEA) Faculté des Sciences de MonastirMonastirTunisia

Personalised recommendations