Indian Journal of Physics

, Volume 93, Issue 9, pp 1211–1217 | Cite as

Renormalization scale and coupling constant on different flavors

  • R Saleh-Moghaddam
  • M E ZomorrodianEmail author
Original Paper


We measure the coupling constant (\(\alpha _{s}\)) as well as the non-perturbative parameter (\(\alpha _{0}\)) in QCD theory by using the renormalization equation and also the dispersive model. Our analysis is based on employing the event shape observables. By fitting the Monte Carlo as well as the real data with the dispersive distributions, we obtain \(\alpha _{s}(M_{Z^{0}})=0.1177\pm 0.0054\) and \(\alpha _{0}=0.5772\pm 0.0348\) GeV. Using different renormalization scales and different flavors gives us results which are consistent with each other. Our values are also consistent with the obtained results from other experiments at different energies as well as with the QCD predictions. We explain all these features in this article.


Quantum chromo-dynamics Renormalization Flavor Coupling constant 


13.66.Bc 11.10.Gh 12.38.-t 



This work was funded by vice president for research and technology of Ferdowsi University of Mashhad, Code 2/42418.


  1. [1]
    V Del Duca, C Duhr, A Kardos, G Somogyi, Z Szr, Z Trcsnyi and Z Tulip Phys. Rev. D94 074019 (2016)ADSGoogle Scholar
  2. [2]
    T Gehrmann, N Haffliger and P F Monni Eur. Phys. J. C74 2896 (2014)ADSCrossRefGoogle Scholar
  3. [3]
    R Saleh-Moghaddam and M E Zomorrodan Pramana J. Phys. 81 5 (2013)CrossRefGoogle Scholar
  4. [4]
    R Saleh-Moghaddam and M E Zomorrodan JETP Lett. 101 4 240 (2015)ADSCrossRefGoogle Scholar
  5. [5]
    S Bethke Eur. Phys. J. C64 689 (2009)ADSCrossRefGoogle Scholar
  6. [6]
    A Gehrmann, T Gehrmann, E W N Glover and G Henrich JHEP 05 106 (2009)ADSGoogle Scholar
  7. [7]
    A Gehrmann and, Phys. Rev. Lett. 110 16 (2013)Google Scholar
  8. [8]
    K G Chetyrkin, A L Kataev and F V Tkachov Phys. Lett.  B85 277 (1979)ADSCrossRefGoogle Scholar
  9. [9]
    W Celmaster and R J Gonsalves Phys. Rev. Lett. 44 560 (1980)ADSCrossRefGoogle Scholar
  10. [10]
    A Gehrmann-De Ridder, T Gehrmann, E W N Glover and G Heinrich JHEP 05 106 (2009)ADSCrossRefGoogle Scholar
  11. [11]
    S Kluth Nucl. Phys. B Proc. Suppl. 96 1–3 54 (2001)ADSCrossRefGoogle Scholar
  12. [12]
    C Pahl, S Bethke, O Biebel, S Kluth and J Schieck, Eur. Phys. J. C64 533 (2009)ADSCrossRefGoogle Scholar
  13. [13]
    L3 Collaboration, Phys. Rep. 399 71 (2004)Google Scholar
  14. [14]
    L Khajooee, T Kalalian et al, Acta Phys. Pol. B45 5 1077 (2014)ADSCrossRefGoogle Scholar
  15. [15]
    R A Davison and B R Webber Eur. Phys. J. C59 13 (2009)ADSCrossRefGoogle Scholar
  16. [16]
    C Amsler et al, Phys. Lett.. B667 1 (2008)ADSCrossRefGoogle Scholar
  17. [17]
    P A Movilla Fernandez, O Biebel, S Bethke and S Kluth Eur. Phys. J.. C1 461 (1998)ADSCrossRefGoogle Scholar
  18. [18]
    The ALEPH Collaboration, Eur. Phys. J. C35 4 (2004)Google Scholar
  19. [19]
    R Saleh-Moghaddam and M E Zomorrodan Indian J. Phys. 87 7 687 (2013)ADSCrossRefGoogle Scholar
  20. [20]
    Y K Li et al, Phys. Rev. D4 12675 (1990)Google Scholar
  21. [21]
    B Naroska DESY report, Phys. Rep. 86 113 (1986)Google Scholar
  22. [22]
    R Saleh-Moghaddam and M E Zomorrodan JETP Lett. 104 9 627 (2016)CrossRefGoogle Scholar
  23. [23]
    A Gehrmann, T Gehrmann, E W N Glover and G Heinrich JHEP 12 094 (2007)ADSGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of sciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations