Indian Journal of Physics

, Volume 93, Issue 9, pp 1129–1135 | Cite as

Fundamental properties of scandium chalcogenides and their alloys: DFT study

  • A. A. Ahmad
  • S. Mahmoud
  • B. Alshafaay
  • R. Halabi
  • F. El Haj HassanEmail author
Original Paper


The full-potential linearized-augmented plane wave calculations based on density functional theory are performed to study the structural, electronic, optical and thermodynamic properties of scandium chalcogenides ScX (X = S, Se, Te) and their ternary alloys at equilibrium as well as under pressure. The revised Perdew–Burke–Ernzerhof generalized gradient approximation (GGA) is used to calculate the structural properties. The electronic and optical properties are calculated employing the GGA and the modified Becke–Johnson (mBJ) approaches. Moreover, the calculated lattice parameters agree well with the experiment results. The structure NaCl-type (B1) of the scandium chalcogenides undergoes under pressure a structural phase transition to CsCl-type (B2) and ZnS-type (B3). The binary and ternary alloys indicate a metallic behavior using GGA and mBJ scheme. The interband contribution to the optical properties is investigated by calculating the dielectric parameters ε1(ω), ε2(ω) and the index of refraction n(ω). A quasi-harmonic Debye model is applied to calculate the thermal properties.


FP-LAPW DFT Ternary alloys Scandium chalcogenides Elastic constants 


61.66.Dk 71.15.Ap 71.15.Mb 71.20.-b 77.22.Ch 



This project has been funded with support from the Lebanese University and the National Council for Sciences Research in Lebanon.


  1. [1]
    T A Grzybowski and A L Ruoff Phys. Rev. Lett. 53 489 (1984)ADSCrossRefGoogle Scholar
  2. [2]
    A Jayaraman, V Narayanamurti, E Bucher and R G Maines Phys. Rev. Lett. 25 1430 (1970)ADSCrossRefGoogle Scholar
  3. [3]
    I A Smirnov Phys. Stats. Solidi A 14 363 (1972)ADSCrossRefGoogle Scholar
  4. [4]
    G Vaitheeswaran, V Kanchana and M Rajgopalan Physica B 315 64 (2002)ADSCrossRefGoogle Scholar
  5. [5]
    C G Duan, R F Sabirianov, W N Mei, P A Dowben, S S Jaswal and E Y Tsymbal J. Phys. Condens. Matter 19 315220 (2007)CrossRefGoogle Scholar
  6. [6]
    T Adachi, I Shirotani, J Hayashi and O Shimomura Phys. Lett. A 250 389 (1998)ADSCrossRefGoogle Scholar
  7. [7]
    O Vogt and K Mattenberger J. Alloys Compd. 223 226 (1995)CrossRefGoogle Scholar
  8. [8]
    C Coban, K Colakoglu and Y O Ciftci Mater. Chem. Phys. 125 887 (2011)CrossRefGoogle Scholar
  9. [9]
    D X Li, Y Haga, H Shida, T Suzuki and Y S Kwon Phys. Rev. B 54 10483 (1996)ADSCrossRefGoogle Scholar
  10. [10]
    M Yoshida, K Koyama, T Sakon, A Ochiai and M Motokawa J. Phys. Soc. Jpn. 69 3629 (2000)ADSCrossRefGoogle Scholar
  11. [11]
    A Jayaraman Indian J. Pure Appl. Phys. 9 983 (1971)Google Scholar
  12. [12]
    A Chatterjee, A K Singh and A Jayaraman Phys. Rev. B 6 2285 (1972)ADSCrossRefGoogle Scholar
  13. [13]
    S M Peiris, T M Green, L D Heinz and K J Burdett Inorg. Chem. 35 6933 (1996)CrossRefGoogle Scholar
  14. [14]
    A Maachou, H Aboura, B Amrani, R Khenata, S Bin Omran and D Varshney Comput. Mater. Sci. 50 3123 (2011)CrossRefGoogle Scholar
  15. [15]
    P Bhardwaj and S Singh Proc. Comput. Sci. 57 160 (2015)CrossRefGoogle Scholar
  16. [16]
    P Bhardwaj and S Singh Solid State Phys. 58 10 (2016)CrossRefGoogle Scholar
  17. [17]
    A Svane, P Strange, W M Temmerman, Z Szotek, H Winter and L Petit Phys. Stat. Solidi (b) 223 105 (2001)ADSCrossRefGoogle Scholar
  18. [18]
    D D Koelling and B N Harmon J. Phys. C Solid State Phys. 10 3107 (1977)ADSCrossRefGoogle Scholar
  19. [19]
    G K H Madsen, P Blaha, K Schwarz, E Sjöstedt and L Nordström Phys. Rev. B 64 195134 (2001)ADSCrossRefGoogle Scholar
  20. [20]
    K Schwarz, P Blaha and G K H Madsen Comput. Phys. Commun. 147 71 (2002)ADSCrossRefGoogle Scholar
  21. [21]
    P Hohenberg and W Kohn Phys. Rev. 136 864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)ADSCrossRefGoogle Scholar
  23. [23]
    P Blaha, K Schwarz, G K H Madsen D Kvasnicka and J. Luitz WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Wein: Karlheinz Schwarz) Techn. Universitat (2001)Google Scholar
  24. [24]
    J P Perdew et al. J. Phys. Rev. Lett. 100 136406 (2008)ADSCrossRefGoogle Scholar
  25. [25]
    F Tran and P Blaha J. Phys. Rev. Lett. 102 226401 (2009)ADSCrossRefGoogle Scholar
  26. [26]
    R Mohammad and S Katırcıoglu J. Alloys Compd. 469 504 (2009)CrossRefGoogle Scholar
  27. [27]
    J S de Almeida and R Ahuja Appl. Phys. Lett. 89 061913 (2006)ADSCrossRefGoogle Scholar
  28. [28]
    R Miloua, Z Kebbab, F Miloua and N Benramdane Phys. Lett. A 372 1910 (2008)ADSCrossRefGoogle Scholar
  29. [29]
    F D Murnaghan Proc. Natl. Acad. Sci. USA 30 244 (1944)ADSCrossRefGoogle Scholar
  30. [30]
    S F Pugh Philos. Mag. 45 823 (1954)CrossRefGoogle Scholar
  31. [31]
    F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)ADSCrossRefGoogle Scholar
  32. [32]
    N M Ravindra, P Ganapathy and J Choi Infrared Phys. Technol. 50 21 (2007)ADSCrossRefGoogle Scholar
  33. [33]
    R E Newnham Properties of Materials: Anisotropy, Symmetry, Structure (New York: Oxford University Press) (2005)Google Scholar
  34. [34]
    M Mattesini, M Magnuson, F Tasnádi, C Höglund, I A Abrikosov and L Hultman Phys. Rev. B 79 125122 (2009)ADSCrossRefGoogle Scholar
  35. [35]
    M A Blanco, E Francisco and V Luaña Comput. Phys. Commun. 158 57 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • A. A. Ahmad
    • 1
  • S. Mahmoud
    • 1
  • B. Alshafaay
    • 2
  • R. Halabi
    • 3
  • F. El Haj Hassan
    • 1
    Email author
  1. 1.Plateforme de Recherche et d’Analyses en Sciences de l’EnvironnementUniversité LibanaiseBeirutLebanon
  2. 2.Department of Physics, College of Education for Pure ScienceUniversity of KerbalaKerbalaIraq
  3. 3.Physics Department, Faculty of ScienceBeirut Arab UniversityBeirutLebanon

Personalised recommendations