Advertisement

Indian Journal of Physics

, Volume 93, Issue 9, pp 1219–1232 | Cite as

Observational constraints on EoS parameters of various modified Chaplygin gas models

  • P. ThakurEmail author
Original Paper
  • 41 Downloads

Abstract

Cosmological models of a class of modified Chaplygin gas as a candidate of unified dark matter and energy are studied to determine observational constraints on its EoS parameters using the background data. These data consist of \(H(z)-z\) (OHD) data, baryonic acoustic oscillations peak parameter data, CMB shift parameter and SN Ia (Union 2.1) data. Best-fit value of present Hubble parameter (\(H_{0}\)), present matter density (\(\Omega _{m0}\)) and present age of the Universe (\(t_{0}\)) has been determined in all these models. The acceptable range of values of the EoS parameters is determined in the analysis. Variations of EoS parameter (\(\omega\)), squared sound speed (\(c^2_{s}\)) and deceleration parameter (q) with redshift are also studied here. Akaike information criteria and Bayesian information criterion are used to check the suitability of the models. Density perturbation and CMB temperature anisotropy have also been studied.

Keywords

Dark energy Structure formation Dark matter Background radiation Hubble parameter 

PACS Nos.

98.80.-k 98.80.Bp 95.35.+d 98.70.Vc 98.80.Es 

Notes

Acknowledgements

The author would like to thank the IUCAA Reference Centre at North Bengal University for extending necessary research facilities to initiate the work.

References

  1. [1]
    S Perlmutter et al. Nature 391 51 (1998)ADSCrossRefGoogle Scholar
  2. [2]
    S Perlmutter et al. Astrophys. J. 517 565(1999)ADSCrossRefGoogle Scholar
  3. [3]
    A G Riess et al. Astron. J. 116 1009 (1998)ADSCrossRefGoogle Scholar
  4. [4]
    A G Riess et al. Astron. J. 607 665 (2004)CrossRefGoogle Scholar
  5. [5]
    J L Tonry et al. Astrophys. J. 594 1 (2003)ADSCrossRefGoogle Scholar
  6. [6]
    S Bridle, O Lahav, J P Ostriker and P J Steinhardt Science 299 1532 (2003)ADSCrossRefGoogle Scholar
  7. [7]
    C L Bennett et al. Astrophys. J. Suppl. 148 1 (2003)ADSCrossRefGoogle Scholar
  8. [8]
    G Hinshaw et al. Astrophys. J. Suppl. 148 135 (2003)ADSCrossRefGoogle Scholar
  9. [9]
    D N Spergel et al. Astrophys. J. Suppl. 148 175 (2003)ADSCrossRefGoogle Scholar
  10. [10]
    J F Navarro, C S Frenk and S D M White Astrophys. J. 462 563 (1996)ADSCrossRefGoogle Scholar
  11. [11]
    A Burkert Astrophys. J. 447 L25 (1995)ADSCrossRefGoogle Scholar
  12. [12]
    G Kauffmann, S D M White and B Guiderdoni Mon. Not. R. Astron. Soc. 264 201 (1993)ADSCrossRefGoogle Scholar
  13. [13]
    A Klypin, A V Kravtsov and O Valenzuela Astrophys. J. 522 82 (1999)ADSCrossRefGoogle Scholar
  14. [14]
    M Kamionkowski and A R Liddle Phys. Rev. Lett. 84 4525 (2000)ADSCrossRefGoogle Scholar
  15. [15]
    A Kamenshchik, U Moschella and V Pasquier Phys. Lett. B 511 265 (2001)ADSCrossRefGoogle Scholar
  16. [16]
    S Chaplygin Sci. Mem. Moscow Univ. Math. Phys. 21 1 (1904)Google Scholar
  17. [17]
    Z H Zhu Astron. Astrophys. 423 421 (2004)ADSCrossRefGoogle Scholar
  18. [18]
    M C Bento, O Bertolami and A A Sen Phys. Lett. B 575 172 (2003)ADSCrossRefGoogle Scholar
  19. [19]
    N Bilic, G B Tupper and R D Viollier Phys. Lett. B 535 17 (2001)ADSCrossRefGoogle Scholar
  20. [20]
    M C Bento, O Bertolami and A A Sen Phys. Rev. D 66 043507 (2002)ADSCrossRefGoogle Scholar
  21. [21]
    J C Fabris, P L C de Oliveira and H E S Velten Eur. Phys. J. C 71 1773 (2011)ADSCrossRefGoogle Scholar
  22. [22]
    L Amendola, F Finelli, C Burigana and D Caruran JCAP 0307 005 (2003)ADSCrossRefGoogle Scholar
  23. [23]
    U Debnath, A Banerjee and S Chakraborty Class. Quant. Grav. 21 5609 (2004)ADSCrossRefGoogle Scholar
  24. [24]
    Y Wu, S Li, J Lu and X Yang Mod. Phys. Lett. A 22 783 (2007)ADSCrossRefGoogle Scholar
  25. [25]
    M L Bedran,V Soares and M E Araujo Phys. Lett. B 659 462 (2008)ADSCrossRefGoogle Scholar
  26. [26]
    S Costa, M Ujevic and A F dos Santos Gen Rel. Grav 40 1683 (2008)ADSCrossRefGoogle Scholar
  27. [27]
    U Debnath and S Chakraborty Int. J. Theor. Phys. 47 2663 (2008)CrossRefGoogle Scholar
  28. [28]
    S Mukherjee, B C Paul, N K Dadhich, S D Maharaj and A Beesham Class. Quant. Grav. 23 6927 (2006)ADSCrossRefGoogle Scholar
  29. [29]
    B Pourhassan and E O Kahya Advances in High Energy Physics 231452 2014 (2014)Google Scholar
  30. [30]
    E O Kahya and B Pourhassan Modern Physics Letters A Vol 30 1550070 13 (2015)Google Scholar
  31. [31]
    J Sadeghi, H Farahni and B Pourhassan Eur. Phys. J. Plus 84 130 (2015)Google Scholar
  32. [32]
    B Pourhassan Can. J. Phys. 94 659-670 (2016)ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E O Kahya, M Khurshudyan and B Pourhassan Eur. Phys. J. C 43 75 (2015)Google Scholar
  34. [34]
    B Pourhassan Physics of the Dark Universe 13 132-138 (2016)ADSCrossRefGoogle Scholar
  35. [35]
    Z Li, W Puxun and Y Hongwei, Astrophy. J. 744 176 (2012)ADSCrossRefGoogle Scholar
  36. [36]
    L Xu, Y Wang and H Noh Eur. Phys. J. C 72 1931 (2012)ADSCrossRefGoogle Scholar
  37. [37]
    J C Fabris, O Ogouyandjou, J Tossa and H E S Velten Phy. Letter B 694 289 (2011)ADSCrossRefGoogle Scholar
  38. [38]
    C-G Park and B Ratra arXiv:1801.00213v1
  39. [39]
    N Suzuki et al. Astrophys. J. 746 85 (2012)ADSCrossRefGoogle Scholar
  40. [40]
    J Simon et al. Phys.Rev. D 71 123001 (2005)ADSCrossRefGoogle Scholar
  41. [41]
    D Stern et al. J. Cosmol. Astropart. Phys. 1002 008 (2010)ADSCrossRefGoogle Scholar
  42. [42]
    M Moresco et al. J. Cosmol. Astropart. Phys. 8 6 (2012)ADSCrossRefGoogle Scholar
  43. [43]
    C Zhang et al. Res. Astron. Astrophys. 14 1221 (2014)ADSCrossRefGoogle Scholar
  44. [44]
    M Moresco Mon. Not. R. Astron. Soc. 450 L16 (2015)ADSCrossRefGoogle Scholar
  45. [45]
    M Moresco et al. JCAP 1605 014 (2016)ADSCrossRefGoogle Scholar
  46. [46]
    A L Ratsimbazafy et al. MNRAS 467 3239 (2017)ADSCrossRefGoogle Scholar
  47. [47]
    D J Eisenstein et al. Astrophy. J. 633 560 (2005)ADSCrossRefGoogle Scholar
  48. [48]
    G Hinshaw et al. WMAP collaboration Astrophys. J. Suppl. 208 19 (2013)ADSCrossRefGoogle Scholar
  49. [49]
    C Blake et al. Mon. Not. R. Astron. Soc. 418 (3) 1707 (2011)ADSCrossRefGoogle Scholar
  50. [50]
    C-H Chuang et al. Mon. Not. R. Astron. Soc. 433 (4) 3559 (2013)ADSCrossRefGoogle Scholar
  51. [51]
    J R Bond, G Efstathiou and M Tegmark Mon. Not. R. Astron. Soc. 291 L33 (1997)ADSGoogle Scholar
  52. [52]
    A Melchiorri, L Mersini, C J Odman and M Trodden Phys. Rev. D 68 043509 (2003)ADSCrossRefGoogle Scholar
  53. [53]
    C J Odman, A Melchiorri, M P Hobson and A N Lasenby Phys. Rev. D 67 083511 (2003)ADSCrossRefGoogle Scholar
  54. [54]
    E Komatsu et al. Astrophys. J. Suppl. 192 18 (2011)ADSCrossRefGoogle Scholar
  55. [55]
    C L Bennett et al. Astronomical J. Suppl. 208 02 (2013)CrossRefGoogle Scholar
  56. [56]
    A Dev et al. Phys. Rev. D 67 023515 (2003)ADSCrossRefGoogle Scholar
  57. [57]
    K Shi, Y F Huang and T Lu Mon. Not. Roy. Astron. Soc. 426 2452 (2012)ADSCrossRefGoogle Scholar
  58. [58]
    G Schwarz Ann. Stat. 6 461 (1978)Google Scholar
  59. [59]
    L Wang and P J Steinhardt Astrophys. J 508 483 (1998)ADSCrossRefGoogle Scholar
  60. [60]
    G Chen and B Ratra arXiv:1105.5206
  61. [61]
    P A R Ade et al. Planck Collaboration Astron. Astrophys. 594 A13 (2016)CrossRefGoogle Scholar
  62. [62]
    Y Chen et al. Astrophys. J 835 86 (2017)ADSCrossRefGoogle Scholar
  63. [63]
    V V Lukovic et al. Astron. Astrophys. 595 A109 (2016)CrossRefGoogle Scholar
  64. [64]
    Y Chen et al. Astrophys. J 856 3 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Physics DepartmentAlipurduar CollegeAlipurduarIndia

Personalised recommendations