Advertisement

Modified FN solution of the neutron transport equation for the Milne problem with FBIS kernel

  • A. ErsoyEmail author
  • G. Türeci
  • M. Şenyiğit
  • M. Ç Güleçyüz
Original Paper
  • 8 Downloads

Abstract

The solution of the Milne problem is studied by one-speed neutron transport equation in plane geometry with İnönü’s scattering kernel, which is known as a linear combination of the forward, backward and isotropic scattering kernel (FBIS kernel). The solution of the neutron transport equation with İnönü’s scattering kernel can be written in terms of the solution of the neutron transport equation for isotropic scattering case. The extrapolation distance is calculated with modified FN (or \(H_{\mathrm{N}}\)) method. The numerical values of the extrapolation distance are obtained depending on the secondary neutron numbers and anisotropy coefficients and compared with the available data in the literature values.

Keywords

Modified FN method Milne problem Extrapolation distance İnönü’s scattering kernel FBIS kernel 

PACS Nos.

28.20.Cz 28.20.Gd 95.30.Jx 

Notes

References

  1. [1]
    K M Case and P F Zweifel Linear Transport Theory (London: Addison-Wesley Publishing Company) (1967)zbMATHGoogle Scholar
  2. [2]
    G I Bell and S Glasstone Nuclear Reactor Theory (New York: Van Nostrand Reinhold Company) (1970)Google Scholar
  3. [3]
    C E Siewert and P Benoist Nucl. Sci. Eng. 69 156 (1979)CrossRefGoogle Scholar
  4. [4]
    K M Case, F de Hoffmann and G Placzek Introduction to the Theory of Neutron Diffusion (Washington, D.C.: U.S. Government Printing Office) (1953)Google Scholar
  5. [5]
    M A Atalay Ann. Nucl. Energy 27 1483 (2000)CrossRefGoogle Scholar
  6. [6]
    M A Atalay J. Quant. Spectrosc. Radiat. Transfer 72 589 (2002)ADSCrossRefGoogle Scholar
  7. [7]
    P Grandjean and C E Siewert Nucl. Sci. Eng. 69 161 (1979)CrossRefGoogle Scholar
  8. [8]
    C E Siewert and P Grandjean Nucl. Sci. Eng. 70 96 (1979)CrossRefGoogle Scholar
  9. [9]
    M Ç Güleçyüz and C Tezcan J. Quant. Spectrosc. Radiat. Transfer 56 309 (1996)ADSCrossRefGoogle Scholar
  10. [10]
    A Kaşkaş and C Tezcan J. Quant. Spectrosc. Radiat. Transfer 55 41 (1996)ADSCrossRefGoogle Scholar
  11. [11]
    E İnönü Transp. Theory Stat. Phys. 3 137 (1973)ADSCrossRefGoogle Scholar
  12. [12]
    K M Case Ann. Phys. 9 1 (1960)ADSCrossRefGoogle Scholar
  13. [13]
    S K Loyalka and S Naz Ann. Nucl. Energy 35 1900 (2008)CrossRefGoogle Scholar
  14. [14]
    G Placzek and W Seidel Phys. Rev. 72 550 (1947)ADSCrossRefGoogle Scholar
  15. [15]
    J A Grzesik Ann. Nucl. Energy 73 382 (2014)CrossRefGoogle Scholar
  16. [16]
    J LeCaine Phys. Rev. 72 564 (1947)ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C Tezcan, A Kaşkaş and M Ç Güleçyüz J. Quant. Spectrosc. Radiat. Transfer 78 243 (2003)ADSCrossRefGoogle Scholar
  18. [18]
    S Bulut, M Ç Güleçyüz, A Kaşkaş and C Tezcan Kerntechnik 72 77 (2007)CrossRefGoogle Scholar
  19. [19]
    C Tezcan, A Kaşkaş and M Ç Güleçyüz J. Quant. Spectrosc. Radiat. Transfer 62 49 (1999)ADSCrossRefGoogle Scholar
  20. [20]
    C E Siewert Astrophys. Space Sci. 58 131 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • A. Ersoy
    • 1
    • 2
    Email author
  • G. Türeci
    • 3
  • M. Şenyiğit
    • 1
  • M. Ç Güleçyüz
    • 1
  1. 1.Department of PhysicsAnkara UniversityAnkaraTurkey
  2. 2.Department of PhysicsKaramanoğlu Mehmetbey UniversityKaramanTurkey
  3. 3.Kırıkkale Vocational High SchoolKırıkkale UniversityKirikkaleTurkey

Personalised recommendations