A novel model of all-optical reversible XOR/XNOR logic gate on a single photonic circuit

  • K. K. UpadhyayEmail author
  • Vanya Arun
  • Saumya Srivastava
  • N. K. Mishra
  • N. K. Shukla
Original Paper


The high speed and high volume of optical data are subjected to electronic conversions at the receiving end of the optical network for processing purposes. This optoelectronic conversion makes the system inefficient in terms of speed and bandwidth. When high-speed data are subjected to electronic processing, heat dissipates from electronic circuits. Another source of heat dissipation is the loss of information from the irreversible processors. The solution of this problem is reversible computing. This research paper proposes a novel 3 × 3 reversible XOR logic gate and XNOR logic gate in a single photonic circuit. The proposed photonic circuit works on the principles of cross-gain modulation and cross-phase modulation, which is introduced by the active regions of two semiconductor optical amplifier in a Mach–Zehnder interferometer structure. The proposed design works at 10 Gbps data rate. The average extinction ratio of the design is 18.58 dB, and the average quality factor is 63.03 dB. The optical cost of the proposed circuit is 1 unit.


Cross-phase modulation (XPM) Cross-gain modulation (XGM) Semiconductor optical amplifier (SOA) Reversible logic Mach–Zehnder interferometer (MZI) Extinction ratio (ER) 


42.30-d 42.50Ex 42.50-p 42.65-k 42.65-Re 42.79-Hp 42.79-Sz 42.81-i 42.82-m 



  1. [1]
    M Notomi, A Shainya, K Nozaki, T Tanabe, S Matsuo, E Kuramoch et al. IET Cric. Device Syst. 5 84 (2011)CrossRefGoogle Scholar
  2. [2]
    A Shancham, K Bergman and L Carloni IEEE Trans. Comput. 57 1246 (2008)MathSciNetCrossRefGoogle Scholar
  3. [3]
    R Landauer IBM J. Res. Dev. 5 183 (1961)CrossRefGoogle Scholar
  4. [4]
    C H Bennett IBM J. Res. Dev. 17 525 (1973)CrossRefGoogle Scholar
  5. [5]
    A J Paustie and K J Blow Opt. Commun. 174 317 (2000)ADSCrossRefGoogle Scholar
  6. [6]
    R Forsati, S V Ebrahimi, K Navi, E Mojoherani and H Jashnsaz Opt. Laser Technol. 45 565 (2013)ADSCrossRefGoogle Scholar
  7. [7]
    V Arun, N K Shukla, A K Singh and P Singh Opt. Quant. Electron. 48 1 (2016)CrossRefGoogle Scholar
  8. [8]
    D Mandal, S Mandal and S K Garai Opt. Laser Technol. 72 33 (2015)ADSCrossRefGoogle Scholar
  9. [9]
    S K Garai IET Optoelectron. 5 247 (2011)CrossRefGoogle Scholar
  10. [10]
    S K Garai Opt. Commun. 313 441 (2014)ADSCrossRefGoogle Scholar
  11. [11]
    C Taraphdar, T Chattopadhyay and J N Roy Opt. Laser Technol. 42 249 (2010)ADSCrossRefGoogle Scholar
  12. [12]
    I Kaminow and T Li Academic Press, China (2002)Google Scholar
  13. [13]
    P Singh, D K Tripathi, S Jaiswal and H K Dixit Opt. Quant. Electron. 46 1435 (2014)CrossRefGoogle Scholar
  14. [14]
    K K Qureshi, Z Liu, H Y Tam and M F Zia Opt. Commun. 309 68 (2013)ADSCrossRefGoogle Scholar
  15. [15]
    S Kumar, S K Raghuwanshi and A Kumar Opt. Eng. 52 97 (2013)Google Scholar
  16. [16]
    A Kumar, S Kumar and A K Raghuwanshi Optik 125 5764 (2014)ADSCrossRefGoogle Scholar
  17. [17]
    C Reis, T Chattopadhyay, P Andre and A Teixeira Appl. Opt. 51 8693 (2012)ADSCrossRefGoogle Scholar
  18. [18]
    G S B Filho, D G Correia, W B de Fraga and G F Guimaraes Opt. Laser Technol. 97 370 (2017)ADSCrossRefGoogle Scholar
  19. [19]
    A C Ferreira, A G Coelho, J R R Sousa et al. Opt. Laser Technol. 77 116 (2016)ADSCrossRefGoogle Scholar
  20. [20]
    R Radha, P S Vinayagam and K Porsezian Commun. Nonlinear Sci. Numer. Simul. 37 354 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A K Cherri and A S Al-Zayed Optik 121 1577 (2009)ADSCrossRefGoogle Scholar
  22. [22]
    A S Al-Zayed and A K Cherri Opt. Laser Technol. 42 810 (2010)ADSCrossRefGoogle Scholar
  23. [23]
    E A Patent, J J G M van der Tol, M L Nielsen, J J M Binsma, Y S Oei, J Mork and M K Smit Electron. Lett. 41 549 (2005)CrossRefGoogle Scholar
  24. [24]
    T Chattopadhyay Opt. Fiber Technol. 17 558 (2011)ADSCrossRefGoogle Scholar
  25. [25]
    Lokesh and A Marwaha Opt. Laser Technol. 70 112 (2015)ADSCrossRefGoogle Scholar
  26. [26]
    A Koteb and K E Zoiros Opt. Commun. 402 511 (2017)ADSCrossRefGoogle Scholar
  27. [27]
    H Han, M Zhang, P Ye and F Zhang Opt. Commun. 281 5140 (2008)ADSCrossRefGoogle Scholar
  28. [28]
    V Arun, N K Shukla, A K Singh and P Singh Opt. Quant. Electron. 48 36 (2016)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • K. K. Upadhyay
    • 1
    Email author
  • Vanya Arun
    • 2
  • Saumya Srivastava
    • 1
  • N. K. Mishra
    • 1
  • N. K. Shukla
    • 1
  1. 1.Department of Electronics and CommunicationUniversity of AllahabadAllahabadIndia
  2. 2.IILM-CETGreater NoidaIndia

Personalised recommendations