Advertisement

Bifurcation analysis of KP and modified KP equations in an unmagnetized dust plasma with nonthermal distributed multi-temperatures ions

  • R. A. Shahein
  • Aly R. Seadawy
Original Paper
  • 3 Downloads

Abstract

In this research, we consider an unmagnetized dusty plasma containing electrons, dust particle and lower (higher) temperature ions. The bifurcation analysis for Kadomtsev–Petviashvili (KP) and modified KP equations are discussed. The solitary and periodic wave solutions including several parameters of ions are investigated. Our novel results show that nonthermal parameter is directly proportional to the width of periodic wave. The width of periodic wave causes the change behavior of wave from compressive periodic to rarefactive. The obtained results have numerous applications in plasma physics.

Keywords

Bifurcation analysis Kadomtsev–Petviashvili equation and modified KP equation Solitary and periodic waves solution 

PACS Nos.

02.30.Jr 05.45.Yv 47.10.A- 47.35.+i 47.35.Fg 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. [1]
    Abdullah, A R Seadawy and W Jun Results Phys. 7 4269 (2017)Google Scholar
  2. [2]
    A R Seadawy, D Lu and M A Khater Optik 143 104 (2017)Google Scholar
  3. [3]
    A R Seadawy Pramana J. Phys. 89 49 (2017)Google Scholar
  4. [4]
    D Dorranian and A Sabetkar Phys. Plasmas 19 013702 (2012)Google Scholar
  5. [5]
    A R Seadawy and K El-Rashidy Results Phys. 8 1216 (2018)Google Scholar
  6. [6]
    U Samanta, A Saha and P Chatterjee Phys. Plasma 20 022111 (2013)Google Scholar
  7. [7]
    Samanta, A Saha, P Chatterjee Astrophys. Space Sci. 347 2:2 (2013)Google Scholar
  8. [8]
    A Saha and P Chatterjee Eur. Phys. J. D 69 203 (2015)Google Scholar
  9. [9]
    R Ali, A Saha and P Chatterjee Indian J. Phys. 91 689 (2017)Google Scholar
  10. [10]
    A Saha and P Chatterjee Astrophys. Space Sci. 349 813 (2014)Google Scholar
  11. [11]
    S El-Monier and A Atteya IEEE Trans. Plasma Sci. 46 815 (2018)Google Scholar
  12. [12]
    M Eslami, B Fathi Vajargah, M Mirzazadeh and A Biswas Indian J. Phys. 88 177 (2014)Google Scholar
  13. [13]
    A Biswas, M Mirzazadeh, M Eslami, D Milovic and M Belic Frequenz 68 525 (2014)Google Scholar
  14. [14]
    M Mirzazadeh, Y Yeledram, E Yasar, H Triki, Q Zhou, S P Moshokoa, M Z Ullah, A R Seadawy, A Biswas and M Belic Optik Int. J. Light Electron Opt. 154 551 (2018)Google Scholar
  15. [15]
    M Eslami and M Mirzazadeh Ocean Eng. 83 133 (2014)Google Scholar
  16. [16]
    T A Sulaiman, T Aktrk, H Bulut and H M Baskonus J. Electromagn. Waves Appl. 32 1093 (2018)Google Scholar
  17. [17]
    H Bulut, T A Sulaiman and H M Baskonus Eur. Phys. J. Plus 132 459 (2017)Google Scholar
  18. [18]
    H Bulut, T A Sulaiman and H M Baskonus Optik 163 49 (2018)Google Scholar
  19. [19]
    H Bulut, T A Sulaiman and H M Baskonus Optik 135 327 (2017)Google Scholar
  20. [20]
    H M Baskonus, T A Sulaimanm and H M Baskonus Indian J. Phys. 135 327 (2017)Google Scholar
  21. [21]
    H Bulut, T A Sulaiman, H M Baskonus and T YazganOpt. Quantum Electron. 49 349 (2017)Google Scholar
  22. [22]
    H Bulut, T A Sulaiman, H M Baskonus and T Yazgan Opt. Quantum Electron. 50 19 (2018)Google Scholar
  23. [23]
    A Esen, T A Sulaiman, H Bulut and H M Baskonus Optik 167 150 (2018)Google Scholar
  24. [24]
    A R Seadawy J. Electromagn. Waves Appl. 31 1353 (2017).Google Scholar
  25. [25]
    A R Seadawy Comput. Math. Appl. 62 3741 (2011)Google Scholar
  26. [26]
    A R Seadawy Pramana J. Phys. 89 49 (2017)Google Scholar
  27. [27]
    A R Seadawy Eur. Phys. J. Plus 130 182 (2015)Google Scholar
  28. [28]
    A R Seadawy Appl. Math. Lett. 25 687 (2012)Google Scholar
  29. [29]
    A R Seadawy Optik Int. J. Light Electron Opt. 139 31 (2017)Google Scholar
  30. [30]
    A H Khater, D K Callebaut and A R Seadawy Phys. Scr. 67 340 (2003)Google Scholar
  31. [31]
    A R Seadawy Eur. Phys. J. Plus 132 29 (2017)Google Scholar
  32. [32]
    A H Khater, D K Callebaut, W Malfliet and A R Seadawy Phys. Scr. 64 533 (2001)Google Scholar
  33. [33]
    M Arshad, A R Seadawy and D Lu J. Electromagn. Waves Appl. 31 1353 (2017)Google Scholar
  34. [34]
    A R Seadawy Math. Methods Appl. Sci. 40 1598 (2017)Google Scholar
  35. [35]
    A Saha, N Pal, T Saha, M Ghorui and P Chatterjee J. Theor. Appl. Phys. 10 271 (2016)Google Scholar
  36. [36]
    S Chow and J Hale Methods of Bifurcation Theory (New York: Springer) (1982)Google Scholar
  37. [37]
    M Arshad, A R Seadawy and D Lu Optik Int. J. Light Electron Opt. 138 40 (2017)Google Scholar
  38. [38]
    M Arshad, A R Seadawy, D Lu and J Wang Chin. J. Phys. 55 780 (2017)Google Scholar
  39. [39]
    Y Ghai, N Saini and M Singh IEEE Trans. Plasma Sci. 46 825 (2018)Google Scholar
  40. [40]
    F Verhultst Nonlinear Differential Equations and Dynamical Systems (New York: Springer) (1996)Google Scholar
  41. [41]
    M Hirsch, S Smale and R Devancey Differential Equations, Dynamical Systems and An Introduction to Chaos (Cambridge: Elsevier Academical Press) (2004)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceTaibah UniversityAl-Madinah Al-MunawarahSaudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceMenoufiya UniversityAl MinufyaEgypt
  3. 3.Mathematics Department, Faculty of ScienceBeni-Suef UniversityBeni SuefEgypt

Personalised recommendations