Advertisement

Understanding perceived color through gradual spectroscopic variations in electrochromism

  • Suryakant Mishra
  • Priyanka Yogi
  • Anjali Chaudhary
  • Devesh K. Pathak
  • Shailendra K. Saxena
  • Alexander S. Krylov
  • P. R. Sagdeo
  • Rajesh Kumar
Original Paper

Abstract

A bias-dependent in situ Raman scattering and UV–Vis absorption spectroscopic change has been correlated with the corresponding color change of an electrochromic device in an attempt to explain how to understand the relationship between actual perceived color and its absorption/transmittance spectra. For this, the bias across an electrochromic device was increased gradually, rather than abruptly turning ON and OFF, to see subtle variations in Raman and absorption spectra due to bias. Raman scattering establishes that viologen changes its oxidation state reversibly between two redox species (EV2+ to EV+•) as a result of bias-induced dynamic redox process. A gradual variation in Raman and absorption spectra, which shows maximum absorption corresponding to the yellow light, accompanies similar variation in color change of the device as visible by naked eye. These spectroscopic results are correlated with the perceived blue color, in the reflected light, by the eye to understand the actual reason behind this. Maximum absorption of yellow light by the device resulting in blue appearance has been explained using the concept of additive and subtractive primary colors.

Keywords

Viologen Raman spectroscopy Electrochromism UV–Vis 

PACS No.

01.40.−d 32.30.Jc 87.64.Je 

Notes

Acknowledgements

Authors acknowledge financial support from the Department of Science and Technology (DST), Govt. of India. Authors are thankful to Dr. K. V. Adarsh (IISER Bhopal) for Raman measurements. Authors thank Prof. V.D. Vankar (IIT Delhi) for useful discussions. Authors (AC and DKP) are thankful to MHRD and CSIR (Govt. of India), respectively, for providing fellowships. Support received from DST under FIST scheme (grant number: SR/FST/PSI-225/2016) is also acknowledged.

Supplementary material

12648_2018_1353_MOESM1_ESM.pdf (654 kb)
Supplementary material 1 (PDF 654 kb)

References

  1. [1]
    S Zhang, G Sun, Y He, R Fu, Y Gu and S Chen ACS Appl. Mater. Interfaces 9 16426 (2017)CrossRefGoogle Scholar
  2. [2]
    S Zhang, C Ran, S Chen, Y Gu, M Jiang, F Hu and B Yan J. Electrochem. Soc. 164 H1021 (2017)CrossRefGoogle Scholar
  3. [3]
    R J Mortimer Annu. Rev. Mater. Res. 41 241 (2011)ADSCrossRefGoogle Scholar
  4. [4]
    R J Mortimer Electrochim. Acta 44 2971 (1999)CrossRefGoogle Scholar
  5. [5]
    T Oi Annu. Rev. Mater. Sci. 16 185 (1986)ADSCrossRefGoogle Scholar
  6. [6]
    S-H Lee, R Deshpande, P A Parilla, K M Jones, B To, A H Mahan and A C Dillon Adv. Mater. 18 763 (2006)CrossRefGoogle Scholar
  7. [7]
    B N Reddy, M Deepa, A G Joshi and A K Srivastava J. Phys. Chem. C 115 18354 (2011)CrossRefGoogle Scholar
  8. [8]
    V K Thakur, G Ding, J Ma, P S Lee and X Lu Adv. Mater. Wiley Online Library (2012). http://onlinelibrary.wiley.com/doi/10.1002/adma.201200213/full
  9. [9]
    G A Niklasson and C G Granqvist J. Mater. Chem. 17 127 (2006)CrossRefGoogle Scholar
  10. [10]
    M V Limaye, J S Chen, S B Singh, Y C Shao, Y F Wang, C W Pao, H M Tsai, J F Lee, H J Lin, J W Chiou, M C Yang, W T Wu, J S Chen, J J Wu, M H Tsai and W F Pong RSC Adv. (RSC Publishing).  https://doi.org/10.1039/c3ra45421e, http://pubs.rsc.org/-/content/articlehtml/2014/ra/c3ra45421e
  11. [11]
    L Kang, Y Gao, H Luo, Z Chen, J Du, and Z Zhang ACS Appl. Mater. Interfaces 3 135 (2011)CrossRefGoogle Scholar
  12. [12]
    E Armstrong, M Osiak, H Geaney, C Glynn and C O’Dwyer Cryst. Eng. Commun. 16 10804 (2014)CrossRefGoogle Scholar
  13. [13]
    F Zheng, W Man, M Guo, M Zhang and Q Zhen Cryst. Eng. Commun. 17 5440 (2015)CrossRefGoogle Scholar
  14. [14]
    F Zheng, H Lu, M Guo and M Zhang Cryst. Eng. Commun. 15 5828 (2013)CrossRefGoogle Scholar
  15. [15]
    S Kim, N Shim, H Lee and B Moon J. Mater. Chem. 22 13558 (2012)CrossRefGoogle Scholar
  16. [16]
    B Han, Z Li, T Wandlowski, A Błaszczyk and M Mayor J. Phys. Chem. C 111 13855 (2007)CrossRefGoogle Scholar
  17. [17]
    G Chidichimo, B C De Simone, D Imbardelli, M De Benedittis, M Barberio, L Ricciardi and A Beneduci J. Phys. Chem. C 118 13484 (2014)CrossRefGoogle Scholar
  18. [18]
    Y Alesanco, A Viñuales, J Palenzuela, I Odriozola, G Cabañero, J Rodriguez and R Tena-Zaera ACS Appl. Mater. Interfaces 8 14795 (2016)CrossRefGoogle Scholar
  19. [19]
    J Palenzuela, A Viñuales, I Odriozola, G Cabañero, H J Grande and V Ruiz ACS Appl. Mater. Interfaces 6 14562 (2014)CrossRefGoogle Scholar
  20. [20]
    E Hwang, S Seo, S Bak, H Lee, M Min and H Lee Adv. Mater. 26 5129 (2014)CrossRefGoogle Scholar
  21. [21]
    A J Olaya, P Ge, J F Gonthier, P Pechy, C Corminboeuf and H H Girault J. Am. Chem. Soc. 133 12115 (2011)CrossRefGoogle Scholar
  22. [22]
    H C Moon, T P Lodge and C D Frisbie Chem. Mater. 27 1420 (2015)CrossRefGoogle Scholar
  23. [23]
    Z Ji, S K Doorn and M Sykora ACS Nano 9 4043 (2015)CrossRefGoogle Scholar
  24. [24]
    S M Kim, J H Jang, K K Kim, H K Park, J J Bae, W J Yu, I H Lee, G Kim, D D Loc, U J Kim, E-H Lee, H-J Shin, J-Y Choi and Y H Lee J. Am. Chem. Soc. 131 327 (2009)CrossRefGoogle Scholar
  25. [25]
    B Liu, A Blaszczyk, M Mayor and T Wandlowski ACS Nano 5 5662 (2011)CrossRefGoogle Scholar
  26. [26]
    R Kumar, R G Pillai, N Pekas, Y Wu and R L McCreery J. Am. Chem. Soc. 134 14869 (2012)CrossRefGoogle Scholar
  27. [27]
    T Lu and T M Cotton J. Phys. Chem. 91 5978 (1987)CrossRefGoogle Scholar
  28. [28]
    D J Barker, R P Cooney and L A Summers J. Raman Spectrosc. 16 265 (1985)ADSCrossRefGoogle Scholar
  29. [29]
    O Poizat, C Sourisseau and Y Mathey J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 80 3257 (1984)Google Scholar
  30. [30]
    S Mishra, H Pandey, P Yogi, S K Saxena, S Roy, P R Sagdeo and R Kumar Opt. Mater. 66 65 (2017)ADSCrossRefGoogle Scholar
  31. [31]
    X Liu, K G Neoh and E T Kang Langmuir 18 9041 (2002)CrossRefGoogle Scholar
  32. [32]
    D J Barker, R P Cooney and L A Summers J. Raman Spectrosc. Wiley Online Library (1987). http://onlinelibrary.wiley.com/doi/10.1002/jrs.1250180612/full CrossRefGoogle Scholar
  33. [33]
    J Romanova, V Liégeois and B Champagne Phys. Chem. Chem. Phys. 16 21721 (2014)CrossRefGoogle Scholar
  34. [34]
    S Ghoshal, T Lu, Q Feng and T M Cotton Spectrochim. Acta Part Mol. Spectrosc. 44 651 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2018

Authors and Affiliations

  1. 1.Material Research Laboratory, Discipline of Physics & MEMSIndian Institute of Technology IndoreSimrolIndia
  2. 2.Federal Research Center KSC SB RASKirensky Institute of PhysicsKrasnoyarskRussia
  3. 3.National Institute for NanotechnologyUniversity of AlbertaEdmontonCanada

Personalised recommendations